Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 23082, 2024 10 04.
Article in English | MEDLINE | ID: mdl-39367128

ABSTRACT

The current study aims to explore the efficacy of antifungal photodynamic therapy (PDT) on C. albicans biofilms by combining photosensitizers, bisdemethoxycurcumin (BDMC), and melatonin (MLT) or acetyl-melatonin (AcO-MLT). Additionally, the relationship between different types of reactive oxygen species and PDT's antifungal efficacy was investigated. BDMC, MLT and AcO-MLT were applied, alone and in combination, to 48-hour C. albicans biofilm cultures (n = 6/group). Blue and red LED light (250 mW/cm2 with 37.5 J/cm2 for single or 75 J/cm2 for dual photosensitizer groups) were used to irradiate BDMC groups and MLT/AcO-MLT groups, respectively. For combination groups, blue LEDs and subsequently red LEDs were used. Drop plate assays were performed at 0, 1 and 6 h post-treatment. Colony forming units (CFUs) were then counted after 48 h. Hydroxyl radicals and singlet oxygen were measured using fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy. Additionally, cell cytotoxicity was tested on human oral keratinocytes. Significant CFU reductions were observed with combinations 20 µM BDMC + 20 µM AcO-MLT and 60 µM BDMC + 20 µM MLT at 0 and 1 h post-treatment, respectively. Singlet oxygen production increased with the addition of MLT/AcO-MLT and had moderate-substantial correlations with inhibition at all times. Hydroxyl radical production was not significantly different from the control. Additionally, BDMC exhibited subtle cytotoxicity on human oral keratinocytes. PDT using BDMC + MLT or AcO-MLT, with blue and red LED light, effectively inhibits C. albicans biofilm through singlet oxygen generation. Melatonin acts as a photosensitizer in PDT to inhibit fungal infection.


Subject(s)
Biofilms , Candida albicans , Diarylheptanoids , Melatonin , Photochemotherapy , Photosensitizing Agents , Melatonin/pharmacology , Photochemotherapy/methods , Candida albicans/drug effects , Photosensitizing Agents/pharmacology , Diarylheptanoids/pharmacology , Biofilms/drug effects , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Reactive Oxygen Species/metabolism , Serotonin/analogs & derivatives
2.
Free Radic Biol Med ; 224: 618-629, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303953

ABSTRACT

Iron overload results in lipid peroxidation (LPO) and the oxidative modification of circulating lipoproteins, which contributes to cardiovascular complications in patients with ß-thalassemia. Investigating LPO may provide opportunities for the development of novel therapeutic strategies; however, the chemical pathways underlying iron overload-induced LPO in ß-thalassemia lipoproteins remain unclear. In this study, we identified various species of lipid radicals (L•), the key mediators of LPO, and oxidized cholesteryl esters (oxCE) derived from the in vitro oxidation of major core lipids, cholesteryl linoleate (CE18:2) and cholesteryl arachidonate (CE20:4); the levels of these radical products in low-density lipoproteins (LDL) and high-density lipoproteins (HDL) were measured and compared between ß-thalassemia patients and healthy subjects by using a specific fluorescent probe for L• with a liquid chromatography-tandem mass spectrometric method. Our results demonstrated that iron overload substantially decreased the levels of CE18:2 and CE20:4 substrates and α-tocopherol, resulting in higher levels of full-length and short-chain truncated L• and oxCE products. In particular, CE epoxyallyl radicals (•CE-O) were observed in the lipoproteins of ß-thalassemia, revealing the pathological roles of iron overload in the progression of LPO. In addition, we found that intermission for two weeks of iron chelators can increase the production of these oxidized products; therefore, suggesting the beneficial effects of iron chelators in preventing LPO progression. In conclusion, our findings partly revealed the primary chemical pathway by which the LPO of circulating lipoproteins is influenced by iron overload and affected by iron chelation therapy. Moreover, we found that •CE + O shows potential as a sensitive biomarker for monitoring LPO in individuals with ß-thalassemia.

3.
Med Sci Monit ; 30: e944335, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783538

ABSTRACT

BACKGROUND Either a reduction in antioxidant levels or an accumulation of reactive oxygen species can heighten susceptibility to oxidative damage in disc cells. To date, no research has investigated the levels of lipid peroxidation products (thiobarbituric acid reactive substances [TBARs]), reduced glutathione (GSH), and glutathione peroxidase (GPx) in excised human lumbar disc tissues affected by degenerative disease. Therefore, this study aimed to evaluate lipid peroxidation products in excised disc tissues from patients with degenerative disc disease. MATERIAL AND METHODS Forty-two patients were enrolled. Patients were divided into lumbar disc degeneration (LDD) and nonlumbar disc degeneration (nonLDD) groups according to Pfirrmann classification. Intervertebral discs were obtained from all patients during the operation and were homogenized for analysis. TBARs levels were measured using fluorometry. GSH levels and GPx activity were quantified spectrophotometrically using a kinetic method. RESULTS TBARs levels in excised discs from LDD patients (5.18±4.14) were significantly higher than those from nonLDD patients (2.56±1.23, P=0.008). The levels of TBARs tended to increase with the severity of degeneration according to the Pfirrmann classification. However, these 2 groups showed no significant differences in reduced glutathione levels or glutathione peroxidase activity (P>0.05). Patients with LDD exhibited a worse health-related quality of life, reflected in lower utility and EQ-VAS scores and higher Oswestry disability index scores. CONCLUSIONS There was a notable increase in lipid peroxidation products in the excised intervertebral discs of patients with LDD. This finding suggests that oxidative stress may contribute to the development of disc degeneration.


Subject(s)
Glutathione Peroxidase , Glutathione , Intervertebral Disc Degeneration , Intervertebral Disc , Lipid Peroxidation , Lumbar Vertebrae , Oxidative Stress , Thiobarbituric Acid Reactive Substances , Female , Humans , Male , Middle Aged , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/metabolism , Lipid Peroxidation/physiology , Lumbar Vertebrae/metabolism , Oxidative Stress/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Aged
4.
ACS Pharmacol Transl Sci ; 7(3): 570-585, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481703

ABSTRACT

Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-ß1 (TGF-ß1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.

5.
Sci Rep ; 14(1): 125, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167594

ABSTRACT

Ecto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was employed to screen for effective ENPP1 inhibitors among five representative flavonoids (quercetin, myricetin, morin, kaempferol, and quercetin-3-glucoside), five nucleosides (adenosine, guanosine, inosine, uridine, and cytidine), and five deoxynucleosides (2'- and 3'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxyinosine, and 2'-deoxyuridine). Conventional colorimetric, fluorescence, and bioluminescence assays revealed that ENPP1 was effectively inhibited by quercetin (Ki ~ 4 nM) and myricetin (Ki ~ 32 nM) when ATP was used as a substrate at pH 7.4. In silico analysis indicated that the presence of a chromone scaffold, particularly one containing a hydroxyl group at the 3' position on the B ring, may promote binding to the active site pocket of ENPP1 and enhance inhibition. This study demonstrated that the naturally derived quercetin and myricetin could effectively inhibit ENPP1 enzymatic activity and may offer health benefits in arthritis management.


Subject(s)
Flavonoids , Quercetin , Humans , Quercetin/pharmacology , Flavonoids/pharmacology , Flavonoids/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism
6.
Nutrients ; 16(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38201990

ABSTRACT

The serum concentration and urinary excretion of flavonoids after the ingestion of guava, pineapple, and pomelo were determined using liquid chromatography-mass spectroscopy (LC-MS/MS). Each group of healthy volunteers was given 200 g of fresh fruit after overnight fasting and a 24-h flavonoid-free diet. The results demonstrate that only the glucuronic-conjugated metabolites of luteolin, quercetin, kaempferol, and myricetin were detected after fruit ingestion. The metabolites were first detected after 2 h, with the time to maximum concentration (Tmax) at 6 h. The most abundant metabolites for guava, pineapple, and pomelo were the glucuronide metabolites of quercetin (AUC0-8 5.4 ± 1.3 µg·h/mL), kaempferol (AUC0-8 9.9 ± 2.3 µg·h/mL), and luteolin (AUC0-8 6.4 ± 1.1 µg·h/mL), respectively. The flavonoids found in the 24-h urinary excretions were glucuronic- and mainly sulfate-conjugated metabolites. Quercetin metabolites were the most abundant after guava and pineapple ingestion, accounting for 900 and 700 µg, respectively. Luteolin metabolites were the most abundant after pomelo ingestion, accounting for 450 µg. The serum and urinary metabolite profiles suggested that guava and pineapple are good sources of quercetin, pineapple is a good source of kaempferol, and pomelo is a good source of luteolin. The study of flavonoid profiles may provide information for the selection of fruits as functional foods for their health benefits to help with various health conditions.


Subject(s)
Fruit , Psidium , Humans , Kaempferols , Quercetin , Chromatography, Liquid , Luteolin , Tandem Mass Spectrometry , Flavonoids , Eating
7.
ACS Pharmacol Transl Sci ; 6(7): 1015-1027, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37470022

ABSTRACT

Dasatinib, a tyrosine kinase inhibitor, has been shown to produce anti-inflammatory activity and impair vascular integrity in vivo, including during skin wound healing, potentially promoting the repair process. Given that dasatinib is a lipophilic small molecule capable of penetrating skin, topical dasatinib might provide benefits in wound healing. In the present study, we investigated the impact of dasatinib ointments in skin wound healing in mice. A full thickness excisional skin wound (4 mm diameter) was generated on the shaved dorsum of eight-week-old C57BL/6 mice. Dasatinib ointment (0.1 or 0.2% w/w) or ointment base was applied twice daily (every 12 h) for 10 days. Elizabethan collars were used to prevent animal licking. The wound size was monitored daily for 14 days. The results showed that dasatinib ointments, particularly 0.1% dasatinib, promoted a 16-23% reduction in wound size (p < 0.05) during day 2 to day 6 postinjury compared to controls. Immunohistochemistry analyses demonstrated a reduction in wound neutrophils (38% reduction, p = 0.04), macrophages (47% reduction, p = 0.005), and tumor necrosis factor-α levels (73% reduction, p < 0.01), together with an induction of vascular leakage-mediated fibrin(ogen) accumulation (2.5-fold increase, p < 0.01) in the wound during day 3 postinjury (an early phase of repair) in 0.1% dasatinib-treated mice relative to control mice. The anti-inflammatory and vascular hyperpermeability activities of dasatinib were associated with an enhanced healing process, including increased keratinocyte proliferation (1.8-fold increase in Ki67+ cells, p < 0.05) and augmented angiogenesis (1.7-fold increase in CD31+ area, p < 0.05), compared to the ointment base-treated group. Following treatment with 0.2% dasatinib ointment, minor wound bleeding and scab reformation were observed during the late phase, which contributed to delayed healing. In conclusion, our data suggest that dasatinib ointment, mainly at 0.1%, promotes the repair process by reducing inflammation and producing a local and temporal vascular leakage, leading to an increase in fibrin(ogen) deposition, re-epithelialization, and angiogenesis. Therefore, topical dasatinib might be a potential novel candidate to facilitate skin wound healing.

8.
Drugs Context ; 112022.
Article in English | MEDLINE | ID: mdl-36544626

ABSTRACT

Background: Hyperfunctional platelets play important roles in thromboembolism in patients with ß-thalassaemia/ haemoglobin E (ß-thal/HbE). Our previous study revealed ex vivo inhibitory effects of deferiprone on normal platelets. Herein, we aimed to investigate the in vivo effects on platelets in patients with ß-thal/HbE. Methods: A prospective, self-controlled clinical study on 30 patients with ß-thal/HbE who had received therapeutic deferiprone (20.8-94.5 mg/kg/day) was conducted. The study included a 4-week washout period followed by 4 and 12 weeks of deferiprone treatment. Platelet aggregation was performed by a turbidimetric method. Levels of deferiprone and soluble platelet (sP)-selectin in serum were measured by high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kit, respectively. Results: The washout period significantly enhanced platelet hyperactivity both in patients who had undergone splenectomy and in those who had not. At 2 hours following the administration of a single dose of deferiprone, platelet sensitivity to ADP and arachidonic acid was significantly reduced. The inhibitory effects of deferiprone were gradually increased over the period of 4 and 12 weeks. Deferiprone also depressed sP-selectin levels, but the effect was stable over longer follow-up periods. Correlation analysis demonstrated the relationship between serum levels of deferiprone, sP-selectin, and platelet activities induced by ADP and arachidonic acid. Conclusion: We first demonstrated the in vivo antiplatelet effect and benefit of short-term treatment of deferiprone in patients with ß-thal/HbE. The impact on thrombotic outcomes deserves further study.

9.
Eur J Pharmacol ; 937: 175384, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36372276

ABSTRACT

Stimulation of angiotensin II receptor (ATR) with angiotensin II (Ang II) accelerates cardiac fibroblast activation, resulting in upregulation of cytokines and growth factors. Growth factors were strongly upregulated in animal models of myocardial fibrosis and hypertrophy as well as patients with heart failure. Nevertheless, the signal transduction of ATR for upregulation of growth factors in human cardiac fibroblasts contributing to myocyte hypertrophy have not fully understood. Long-term Ang II treatment of human cardiac fibroblasts provokes the synthesis and secretion of connective tissue growth factor (CTGF), transforming growth factor beta1 (TGF-ß1), and vascular endothelial growth factor (VEGF) through the AT1R subtype. Blockade of Gαq, not Gαi or Gα12/13, protein signaling inhibited AT1R-mediated upregulation of CTGF, TGF-ß1, and VEGF. In addition, AT1R overstimulation induced upregulation of growth factors via the TGF-ß-dependent and ERK1/2-dependent pathways. Growth factors secreted from cardiac fibroblasts are necessary for the induction of hypertrophic markers, atrial natriuretic peptide (ANP) and ß-myosin heavy chain (ß-MHC), resulting in myocyte hypertrophy. Candesartan, irbesartan, and valsartan had greater effects than losartan for blockade of fibrotic and hypertrophic effects of Ang II. Our data support the concept whereby sustained AT1R stimulation contributes to the development of myocardial fibrosis and hypertrophy, and advances understanding of this complex AT1R signaling, including fibroblasts-myocytes communication during pathological conditions.


Subject(s)
Cardiomyopathies , Transforming Growth Factor beta , Animals , Humans , Angiotensin II/pharmacology , Angiotensin II/metabolism , Cardiomyopathies/metabolism , Fibroblasts , Fibrosis , Hypertrophy/pathology , Muscle Cells/metabolism , Myocardium/metabolism , Receptors, Angiotensin , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism
10.
Biomed Pharmacother ; 154: 113624, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057220

ABSTRACT

Vascular complications in ß-thalassemia are associated with oxidative modification of lipoproteins under high oxidative stress. The lipid components of lipoproteins are oxidized via lipid peroxidation and produce lipid radicals (L•) as the key initial intermediates. Modification of lipid components, therefore, might result in alterations in the rate and products of lipid peroxidation. In this study, the kinetics of L• formation during the 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)- and hemin-induced oxidation of low-density and high-density lipoproteins (LDL and HDL) from ß-thalassemia patients and healthy volunteers were investigated using a specific and sensitive fluorescence probe for L•. Kinetic parameters, including initial lag time, propagation rate and total L• production, were calculated by monitoring a fluorescence-active NBD-Pen-L• adduct. Oxidation of thalassemia lipoproteins exhibited a significantly shorter lag time but a slower propagation rate of L• formation when compared with healthy lipoproteins. LDL showed higher resistance to oxidation during the initiation phase but higher L• formation than HDL. Our results indicated that the levels of α-tocopherol determined the initial lag time, whereas the levels of core lipids and cholesteryl esters, especially cholesteryl linoleate (CL), determined the propagation rate and total L• production. The difference in potency of AAPH and hemin supported that hemin preferentially targeted core lipids. Moreover, analysis of 13-hydroxyoctadecadienoic acid cholesteryl ester (13-HODE-CE)/CE ratio indicated that thalassemia lipoproteins have higher susceptibility to oxidation than healthy lipoproteins. In conclusion, our findings suggested that CL and α-tocopherol were implicated in the susceptibility of lipoproteins to lipid peroxidation in physiological and pathological conditions of ß-thalassemia.


Subject(s)
alpha-Tocopherol , beta-Thalassemia , Amidines , Cholesterol Esters , Hemin , Humans , Kinetics , Lipid Peroxidation , Lipoproteins , Lipoproteins, LDL/metabolism , Oxidation-Reduction , Vitamin E/pharmacology
11.
Biomed Pharmacother ; 145: 112381, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34736078

ABSTRACT

The oxidative status of twenty-three ß-thalassemia/hemoglobin E patients was evaluated after administration of 75 mg/kg deferiprone (GPO-L-ONE®) divided into 3 doses daily for 12 months. Serum ferritin was significantly decreased; the median value at the initial and final assessments was 2842 and 1719 ng/mL, respectively. Progressive improvement with significant changes in antioxidant enzyme activity, including plasma paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH), and in antioxidant enzymes in red blood cells (glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)) were observed at 3-6 months of treatment. The levels of total GSH in red blood cells were significantly increased at the end of the study. Improved red blood cell membrane integrity was also demonstrated using the EPR spin labeling technique. Membrane fluidity at the surface and hydrophobic regions of the red blood cell membrane was significantly changed after 12 months of treatment. In addition, a significant increase in hemoglobin content was observed (6.6 ± 0.7 and 7.5 ± 1.3 g/dL at the initial assessment and at 6 months, respectively). Correlations were observed between hemoglobin content, membrane fluidity and antioxidant enzymes in red blood cells. The antioxidant activity of deferiprone may partly be explained by progressive reduction of redox active iron that catalyzes free radical reactions, as demonstrated by the EPR spin trapping technique. In conclusion, iron chelation therapy with deferiprone notably improved the oxidative status in thalassemia, consequently reducing the risk of oxidative-related complications. Furthermore, the improvement in red blood cell quality may improve the anemia situation in patients.


Subject(s)
Deferiprone/pharmacology , Iron Chelating Agents/pharmacology , Iron/metabolism , beta-Thalassemia/drug therapy , Adolescent , Adult , Antioxidants/metabolism , Deferiprone/administration & dosage , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Ferritins/blood , Glutathione Peroxidase/metabolism , Hemoglobin E/metabolism , Humans , Iron Chelating Agents/administration & dosage , Male , Middle Aged , Oxidation-Reduction , Superoxide Dismutase/metabolism , Young Adult
12.
J Thromb Haemost ; 19(12): 3154-3167, 2021 12.
Article in English | MEDLINE | ID: mdl-34402195

ABSTRACT

BACKGROUND: Inflammatory bleeding due to depletion of platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) has been proposed as a potential novel mechanism to promote skin wound healing. Dasatinib inhibits a broad range of tyrosine kinases, including Src and Syk, the signaling molecules downstream of GPVI and CLEC-2. OBJECTIVES: To investigate whether dasatinib affects skin wound healing. METHODS: A single (4-mm diameter) full-thickness excisional skin wound was generated in mice. Dasatinib (5 or 10 mg/kg) or dimethyl sulfoxide (DMSO) vehicle was intraperitoneally injected daily during the first 4 days. The wound was monitored over 9 days post injury. RESULTS: Dasatinib induced loss of vascular integrity during the inflammatory phase of wound repair (day 1 to day 3 post injury), which was associated with the inhibition of platelet function stimulated by collagen and rhodocytin, the ligands for GPVI and CLEC-2, respectively. Dasatinib-treated mice, particularly at 5 mg/kg, exhibited accelerated wound closure compared to DMSO-treated controls. Transient bleeding into the wound during the inflammatory phase in dasatinib-treated mice allowed for extravasation of fibrinogen. The increased deposition of fibrinogen and fibrin in the wound on day 3 post injury was associated with the augmented progression of re-epithelialization and angiogenesis, attenuated infiltration of neutrophils and macrophages, and decreased levels of tumor necrosis factor-α (TNF-α). CONCLUSIONS: Our data show that dasatinib promotes skin wound healing, and the mechanisms include blocking GPVI- and CLEC-2-mediated platelet activation, leading to self-limited inflammatory bleeding and fibrinogen/fibrin deposition, in association with reduced inflammation, increased re-epithelialization, and enhanced angiogenesis.


Subject(s)
Dasatinib/therapeutic use , Platelet Activation , Platelet Membrane Glycoproteins , Wound Healing , Animals , Blood Platelets , Lectins, C-Type , Mice , Protein-Tyrosine Kinases , Skin , Wound Healing/drug effects
13.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198641

ABSTRACT

Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients.

14.
Molecules ; 26(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919066

ABSTRACT

This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (w/w) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm2 and yield of 72 J/cm2. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue® toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, Candida albicans (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit Candida albicans similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (w/w) nano-titanium dioxide exerted the highest inhibitory effect on Candida albicans.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Erythrosine/chemistry , Photochemotherapy , Titanium/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Electron Spin Resonance Spectroscopy , Fibroblasts/metabolism , Gingiva/cytology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism
15.
Photodiagnosis Photodyn Ther ; 31: 101747, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32200021

ABSTRACT

INTRODUCTION: Photodynamic therapy improves oral mucositis treatment. The reactive oxygen species (ROS) generated from this reaction could contribute to an anti-inflammatory effect by suppressing inflammatory cells. OBJECTIVE: To evaluate the anti-inflammatory effect of photodynamic therapy using guaiazulene and a red laser in peripheral blood mononuclear cells (PBMCs). METHODS: Guaiazulene solutions (1, 2, 5, 25, 35, and 100 µM in 99.8 % methanol) were irradiated with red laser light (625 nm, 146.2 mW/cm2) in continuous mode at 0, 4, and 8 J/cm2 in black 96-well plates. ROS were measured using spin trapping technique with electron spin resonance (ESR) spectroscopy and fluorescence. The two highest concentrations were tested using cell viability (PrestoBlue®) and anti-inflammation (RANTES and PGE2 ELISA) assay kits. Kruskal-Wallis and Dunn Bonferroni tests were used for statistical analyses with significant differences at p-value < 0.05. RESULTS: Guaiazulene solutions between 2 and 5 µM exposed to red laser light at 4-8 J/cm2 generated significantly more singlet oxygen compared to the no guaiazulene group (p < 0.01) and reduced RANTES and PGE2 levels in TNF-α-inflamed peripheral blood mononuclear cells without affecting cell viability. CONCLUSION: Photodynamic activation of guaiazulene generated singlet oxygen and suppressed inflammatory markers in PBMCs.


Subject(s)
Photochemotherapy , Azulenes , Lasers , Leukocytes, Mononuclear , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Sesquiterpenes, Guaiane
16.
Platelets ; 31(4): 505-512, 2020 May 18.
Article in English | MEDLINE | ID: mdl-31366263

ABSTRACT

Thalassemia patients are susceptible to both iron overload and thromboembolism. Deferiprone is an iron chelator that shows an antiplatelet activity and thus may alleviate platelet hyperactivation in thalassemia. Therefore, this study aimed to characterize the inhibitory effects and mechanisms of deferiprone on normal human platelets. The results illustrated that deferiprone inhibited platelet aggregation at the iron chelating concentrations (0.08-0.25 mmol/l). Deferiprone inhibited human platelet aggregation stimulated by arachidonic acid and ADP more potently than epinephrine and collagen, with the IC50 of 0.24 mmol/l and 0.25 mmol/l vs. 3.36 mmol/l and 3.73 mmol/l, respectively. Interestingly, deferiprone significantly inhibited COX-1 activity, with the IC50 of 0.33 mmol/l, and slightly increased cAMP level at the high concentration of 4 mmol/l. Moreover, the results from molecular docking showed that deferiprone interacted closely with key residues in the peroxidase active site of COX-1. These results suggested that deferiprone possessed antiplatelet activity mainly through the inhibition of COX-1 activity.


Subject(s)
Blood Platelets/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/pharmacology , Deferiprone/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Adenosine Diphosphate/pharmacology , Adolescent , Arachidonic Acid/pharmacology , Blood Platelets/enzymology , Blood Platelets/metabolism , Cyclic AMP/metabolism , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/genetics , Deferiprone/chemistry , Humans , Inhibitory Concentration 50 , Middle Aged , Molecular Docking Simulation , Young Adult
17.
Free Radic Res ; 53(9-10): 968-978, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31452415

ABSTRACT

Haemin (iron (III)-protoporphyrin IX) is a degradation product of haemoglobin in circulating erythrocytes. Haemin may play a key oxidising agent for lipoprotein oxidation in patients with haemolytic anaemia. In this study, kinetic changes in chemical composition and target sites of haemin-induced LDL and HDL oxidation were investigated. Haemin initially induced the loss of α-tocopherol, followed by accumulation of lipid hydroperoxide (LP) and alteration of core lipid fluidity. The absence of LP in HDL was explained by the antioxidant activity of PON in addition to α-tocopherol. The target site of haemin was evaluated by ESR spin labelling with 5- and 16-doxyl steric acids. In the presence of t-BuOOH and haemin, ESR signal decay of the doxyl moiety demonstrated the initiation phase and the propagation phase of lipid peroxidation. The results of the lag time and the rate of signal decay indicated that haemin is located near the 16th carbon atom of the fatty acid chain in the phospholipid layer. The analyses of motion parameters, order parameter (S) of 5-DS and rotational correlation time (τ) of 16-DS, supported the observation that the lipid properties changed near the hydrophobic region rather than at the surface region of lipoproteins. Moreover, ESR spin labelling demonstrated that haemin molecules but not iron ions caused lipoprotein oxidation. In conclusion, haemin is a potent inducer of lipoprotein oxidation, and the target site for this oxidation is near the hydrophobic core of the lipoprotein leading to the loss of antioxidant activities and changes in lipid composition and physical properties.


Subject(s)
Hemin/metabolism , Lipid Peroxidation/immunology , Lipoproteins/metabolism , Adult , Humans , Kinetics , Male , Young Adult
18.
Magn Reson Imaging ; 61: 267-272, 2019 09.
Article in English | MEDLINE | ID: mdl-31128226

ABSTRACT

Brain iron overload is chronic and slow progressing and plays an important role in the pathogenesis of neurodegenerative disorders. Magnetic resonance imaging (MRI) is a useful noninvasive tool for determining liver iron content, but it has not been proven to be adequate for evaluating brain iron overload. We evaluated the usefulness of MRI-derived parameters to determine brain iron concentration in ß-thalassemic mice and the effects of the membrane permeable iron chelator, deferiprone. Sixteen ß-thalassemic mice underwent 1.5T MRI of the brain that included a multiecho T2*-weighted sequence. Brain T2* values ranged from 28 to 31ms for thalassemic mice. For the iron overloaded thalassemic mice, brain T2* values decreased, ranging from 8 to 12ms, which correlated with the iron overload status of the animals. In addition, brain T2* values increased in the group with the treatment of deferiprone, ranging from 18 to 24ms. Our results may be useful to understand brain pathology in iron overload. Moreover, data could lead to an earlier diagnosis, assist in following disease progression, and demonstrate the benefits of iron chelation therapy.


Subject(s)
Brain/diagnostic imaging , Iron Chelating Agents/pharmacology , Iron Overload/diagnostic imaging , Magnetic Resonance Imaging , beta-Thalassemia/diagnostic imaging , Animals , Brain/pathology , Chelating Agents/pharmacology , Computer Graphics , Deferiprone , Disease Models, Animal , Disease Progression , Female , Iron , Iron Overload/pathology , Liver/pathology , Male , Mice , Mice, Knockout , User-Computer Interface
20.
Photodiagnosis Photodyn Ther ; 22: 101-105, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29535046

ABSTRACT

BACKGROUND AND OBJECTIVE: Curcumin, one of an established curcuminoid substances extracted from Curcuma longa, has been used as a photosensitizer (PS) in photodynamic therapy (PDT). Curcuminoid substances has been reported to have benefits in treating dental chronic infection and inflammation diseases, such as chronic periodontitis. The purpose of this study was to find the optimum concentration of Curcuma longa (CL) extract, containing all curcuminoid substances, and the power density of blue light (BL) in photodynamic therapy against periodontally pathogenic bacteria, A. actinomycetemcomitans. METHODS: Antibacterial activity of various concentrations of CL extract against A. actinomycetemcomitans was determined. Exponentially growing bacteria were combined with 2-fold dilution of CL extract solution ranging from 25 to 0.098 µg/ml. Co-culture bacteria treated with 0.12% chlorhexidine (CHX) served as the positive control. The effect of photostimulation with light emitting diode (LED) 420-480 nm at 16.8 J/cm2 for 1 min on the selected concentration of CL extract was examined. Bacteria viability was determined by plate counting technique. In addition, production of free radicals was tested by electron spin resonance spectroscope (ESR) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). RESULTS: The antibacterial activity of CL extract was dose dependent. Without BL, 25 µg/ml CL extract showed 6.03 ±â€¯0.39 log10A. actinomycetemcomitans. Interestingly, the combination of BL and 0.78 µg/ml CL extract solution showed complete absence of A. actinomycetemcomitans. Peak signal intensity of hydroxyl radical production was also detected with the combination of BL and CL. CONCLUSIONS: CL extract not only had antimicrobial activity but also could be used as an effective PS when stimulated with BL in PDT. The optimal antibacterial effect of CL extract with BL was equal to the standard oral disinfectant, 0.12% CHX.


Subject(s)
Aggregatibacter actinomycetemcomitans/drug effects , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Plant Extracts/pharmacology , Curcuma , Dose-Response Relationship, Drug , Free Radical Scavengers/pharmacology , Light
SELECTION OF CITATIONS
SEARCH DETAIL