Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5929, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207334

ABSTRACT

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Ferrets , Humans , Melphalan , Mice , Phenotype , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , gamma-Globulins
2.
Cell Rep ; 39(4): 110736, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476995

ABSTRACT

The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery.


Subject(s)
Influenza A virus , Influenza, Human , Zika Virus Infection , Zika Virus , Histone Deacetylase 6/metabolism , Humans , Influenza A virus/metabolism , Ubiquitin/metabolism , Zika Virus/metabolism
3.
Cells ; 10(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34359892

ABSTRACT

Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.


Subject(s)
Host-Pathogen Interactions , Orthomyxoviridae/physiology , Signal Transduction , Virus Uncoating/physiology , Animals , Capsid/metabolism , Humans , Models, Biological
4.
Sci Immunol ; 6(55)2021 01 08.
Article in English | MEDLINE | ID: mdl-33419790

ABSTRACT

Influenza is a deadly and costly infectious disease, even during flu seasons when an effective vaccine has been developed. To improve vaccines against respiratory viruses, a better understanding of the immune response at the site of infection is crucial. After influenza infection, clonally expanded T cells take up permanent residence in the lung, poised to rapidly respond to subsequent infection. Here, we characterized the dynamics and transcriptional regulation of lung-resident CD4+ T cells during influenza infection and identified a long-lived, Bcl6-dependent population that we have termed T resident helper (TRH) cells. TRH cells arise in the lung independently of lymph node T follicular helper cells but are dependent on B cells, with which they tightly colocalize in inducible bronchus-associated lymphoid tissue (iBALT). Deletion of Bcl6 in CD4+ T cells before heterotypic challenge infection resulted in redistribution of CD4+ T cells outside of iBALT areas and impaired local antibody production. These results highlight iBALT as a homeostatic niche for TRH cells and advocate for vaccination strategies that induce TRH cells in the lung.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Disease Models, Animal , Female , Humans , Immunity, Mucosal , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/virology , Lung/immunology , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
5.
Nat Commun ; 8(1): 1259, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097654

ABSTRACT

Lysine acetylation is a post-translational modification known to regulate protein functions. Here we identify several acetylation sites of the influenza A virus nucleoprotein (NP), including the lysine residues K77, K113 and K229. Viral growth of mutant virus encoding K229R, mimicking a non-acetylated NP lysine residue, is severely impaired compared to wildtype or the mutant viruses encoding K77R or K113R. This attenuation is not the result of decreased polymerase activity, altered protein expression or disordered vRNP co-segregation but rather caused by impaired particle release. Interestingly, release deficiency is also observed mimicking constant acetylation at this site (K229Q), whereas virus encoding NP-K113Q could not be generated. However, mimicking NP hyper-acetylation at K77 and K229 severely diminishes viral polymerase activity, while mimicking NP hypo-acetylation at these sites has no effect on viral replication. These results suggest that NP acetylation at K77, K113 and K229 impacts multiple steps in viral replication of influenza A viruses.


Subject(s)
Influenza A virus/genetics , Lysine/metabolism , RNA-Binding Proteins/genetics , Viral Core Proteins/genetics , Virus Replication/genetics , Acetylation , Animals , Dogs , HEK293 Cells , Humans , Influenza A virus/growth & development , Influenza A virus/metabolism , Madin Darby Canine Kidney Cells , Mutation , Nucleocapsid Proteins , RNA-Binding Proteins/metabolism , Viral Core Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 113(45): 12797-12802, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791106

ABSTRACT

Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.

7.
Nat Commun ; 7: 12861, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27650413

ABSTRACT

Packaging of the eight genomic RNA segments of influenza A viruses (IAV) into viral particles is coordinated by segment-specific packaging sequences. How the packaging signals regulate the specific incorporation of each RNA segment into virions and whether other viral or host factors are involved in this process is unknown. Here, we show that distinct amino acids of the viral nucleoprotein (NP) are required for packaging of specific RNA segments. This was determined by studying the NP of a bat influenza A-like virus, HL17NL10, in the context of a conventional IAV (SC35M). Replacement of conserved SC35M NP residues by those of HL17NL10 NP resulted in RNA packaging defective IAV. Surprisingly, substitution of these conserved SC35M amino acids with HL17NL10 NP residues led to IAV with altered packaging efficiencies for specific subsets of RNA segments. This suggests that NP harbours an amino acid code that dictates genome packaging into infectious virions.


Subject(s)
Genome, Viral , Nucleoproteins/genetics , Orthomyxoviridae/genetics , Virus Assembly/physiology , Amino Acid Sequence , Animals , Chiroptera/virology , Conserved Sequence , Models, Molecular , Mutation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...