Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Appl Physiol (1985) ; 132(3): 785-793, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35142559

ABSTRACT

Patients with chronic kidney disease (CKD) have exaggerated increases in blood pressure during exercise that are associated with endothelial dysfunction. We hypothesized that aerobic exercise training would improve endothelial function and attenuate blood pressure reactivity during exercise in CKD. Sedentary individuals with CKD stages III-IV underwent 12 wk of aerobic cycling exercise (n = 26) or nonaerobic exercise (n = 22, control). Both interventions were performed 3 days/wk and matched for duration. Endothelial function was measured via peripheral arterial tonometry and quantified as reactive hyperemia index (RHI). Peak oxygen uptake (V̇o2peak) was assessed via maximal treadmill exercise testing with concomitant blood pressure monitoring. All measurements were performed at baseline and after the 12-wk intervention. A linear mixed model was used to compare the rate of increase in blood pressure during the test. RHI improved with exercise (Pre = 1.78 ± 0.10 vs. Post = 2.01 ± 0.13, P = 0.03) with no change following stretching (Pre = 1.73 ± 0.08 vs. Post = 1.67 ± 0.10, P = 0.69). Peak systolic blood pressure during the maximal treadmill exercise test was lower after exercise training (Pre = 186 ± 5 mmHg, Post = 174 ± 4 mmHg, P = 0.003) with no change after stretching (Pre = 190 ± 6 mmHg, Post = 190 ± 4 mmHg, P = 0.12). The rate of increase in systolic blood pressure during the V̇o2peak test tended to decrease after training for both groups (-2 mmHg/stage) with no differences between groups (P = 0.97). There was no change in V̇o2peak after either intervention. In conclusion, aerobic exercise training improves endothelial function and attenuates peak blood pressure reactivity during exercise in CKD.NEW & NOTEWORTHY Patients with chronic kidney disease (CKD) exhibit increased blood pressure reactivity during exercise that is associated with endothelial dysfunction. Twelve weeks of structured, aerobic, exercise training improves endothelial function and attenuates peak blood pressure responses during exercise in CKD stages III-IV.


Subject(s)
Exercise , Renal Insufficiency, Chronic , Blood Pressure/physiology , Exercise/physiology , Exercise Test , Exercise Therapy , Female , Humans , Male , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy
3.
Am J Physiol Regul Integr Comp Physiol ; 319(6): R611-R616, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32966119

ABSTRACT

Posttraumatic stress disorder (PTSD) is an independent risk factor for the development of hypertension and cardiovascular disease. Patients with PTSD have heightened blood pressure and sympathetic nervous system reactivity; however, it is unclear if patients with PTSD have exaggerated vasoconstriction in response to sympathetic nerve activation that could also contribute to increased blood pressure reactivity. Therefore, we hypothesized that patients with PTSD have increased sensitivity of vascular α1-adrenergic receptors (α1ARs), the major mediators of vasoconstriction in response to release of norepinephrine at sympathetic nerve terminals. To assess vascular α1AR sensitivity, we measured the degree of venoconstriction in a dorsal hand vein in response to exponentially increasing doses of the selective α1AR agonist, phenylephrine (PE), in 9 patients with PTSD (age = 59 ± 2 yr) and 10 age-matched controls (age = 60 ± 1 yr). Individual dose-response curves were generated to determine the dose of PE that induces 50% of maximal venoconstriction (i.e., PE ED50) reflective of vascular α1AR sensitivity. In support of our hypothesis, PE ED50 values were lower in PTSD compared with controls (245 ± 54 ng/min vs. 1,995 ± 459 ng/min, P = 0.012), indicating increased vascular α1AR sensitivity in PTSD. The PTSD group also had an increase in slope of rise in venoconstriction, indicative of an altered venoconstrictive reactivity to PE compared with controls (19.8% ± 1.2% vs. 15.1% ± 1.2%, P = 0.009). Heightened vascular α1AR sensitivity in PTSD may contribute to augmented vasoconstriction and blood pressure reactivity to sympathoexcitation and to increased cardiovascular disease risk in this patient population.


Subject(s)
Aging/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Stress Disorders, Post-Traumatic/metabolism , Sympathetic Nervous System/metabolism , Vasoconstriction , Adrenergic alpha-1 Receptor Agonists/administration & dosage , Age Factors , Blood Pressure , Case-Control Studies , Dose-Response Relationship, Drug , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Phenylephrine/administration & dosage , Receptors, Adrenergic, alpha-1/drug effects , Signal Transduction , Stress Disorders, Post-Traumatic/physiopathology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL