Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Neurol ; 271(7): 4258-4266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625400

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. It is mostly sporadic, with the C9orf72 repeat expansion being the most common genetic cause. While the prevalence of C9orf72-ALS in patients from different populations has been studied, data regarding the yield of C9orf72 compared to an ALS gene panel testing is limited.We aimed to explore the application of C9orf72 versus a gene panel in the general Israeli population. A total of 140 ALS patients attended our Neurogenetics Clinic throughout 2018-2023. Disease onset was between ages 60 and 69 years for most patients (34%); however, a quarter had an early-onset disease (< 50 years). Overall, 119 patients (85%) were genetically evaluated: 116 (97%) were tested for the C9orf72 repeat expansion and 64 (54%) underwent gene panel testing. The C9orf72 repeat expansion had a prevalence of 21% among Ashkenazi Jewish patients compared to 5.7% in non-Ashkenazi patients, while the gene panel had a higher yield in non-Ashkenazi patients with 14% disease-causing variants compared to 5.7% in Ashkenazi Jews. Among early-onset ALS patients, panel testing was positive in 12% compared to 2.9% for C9orf72.We suggest a testing strategy for the Israeli ALS patients: C9orf72 should be the first-tier test in Ashkenazi Jewish patients, while a gene panel should be considered as the first step in non-Ashkenazi and early-onset patients. Tiered testing has important implications for patient management, including prognosis, ongoing clinical trials, and prevention in future generations. Similar studies should be implemented worldwide to uncover the diverse ALS genetic architecture and facilitate tailored care.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Genetic Testing , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , C9orf72 Protein/genetics , Middle Aged , Male , Female , DNA Repeat Expansion/genetics , Aged , Israel/epidemiology , Jews/genetics , Adult
2.
JAMA Netw Open ; 7(2): e240146, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38386321

ABSTRACT

Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.


Subject(s)
Critical Illness , Intensive Care, Neonatal , Infant , Infant, Newborn , Female , Male , Humans , Cohort Studies , Prospective Studies , Intensive Care Units, Neonatal
3.
N Engl J Med ; 389(18): 1685-1692, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37913506

ABSTRACT

Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.


Subject(s)
Arrhythmias, Cardiac , Cardiomyopathies , Heart Atria , Hypertension , Humans , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Atrial Fibrillation , Atrial Natriuretic Factor/blood , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Cardiomyopathies/blood , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Fibrosis , Heart Atria/diagnostic imaging , Heart Atria/metabolism , Heart Atria/pathology , Hypertension/blood , Hypertension/genetics , Hypertension/metabolism , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Serine Endopeptidases/blood , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Siblings
4.
Mol Genet Metab ; 140(3): 107702, 2023 11.
Article in English | MEDLINE | ID: mdl-37776842

ABSTRACT

Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.


Subject(s)
Propionic Acidemia , Infant, Newborn , Child , Humans , Propionic Acidemia/genetics , RNA , Methylmalonyl-CoA Decarboxylase/genetics , Mutation , Codon, Nonsense
5.
Prenat Diagn ; 43(10): 1374-1377, 2023 09.
Article in English | MEDLINE | ID: mdl-37639281

ABSTRACT

A Jewish couple of mixed origin was referred for genetic counseling following termination of pregnancy at 18 weeks of gestation due to severe ventriculomegaly with aqueduct stenosis. Trio exome sequencing revealed a loss-of-function heterozygous variant in the SMARCC1 gene inherited from an unaffected mother. The SMARCC1 gene is associated with embryonic neurodevelopmental processes. Recent studies have linked perturbations of the gene with autosomal dominant congenital hydrocephalus, albeit with reduced penetrance. However, these studies were not referenced in the SMARCC1 OMIM record (*601732) and the gene was not considered, at the time, an OMIM morbid gene. Following our case and appeal, SMARCC1 is now considered a susceptibility gene for hydrocephalus. This allowed us to reclassify the variant as likely pathogenic and empowered the couple to make informed reproductive choices.


Subject(s)
Hydrocephalus , Transcription Factors , Female , Humans , Pregnancy , Genetic Counseling , Heterozygote , Hydrocephalus/genetics , Penetrance , Transcription Factors/genetics
6.
Eur J Paediatr Neurol ; 45: 29-35, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37267771

ABSTRACT

BACKGROUND: Leukodystrophies are monogenic disorders primarily affecting the white matter. We aimed to evaluate the utility of genetic testing and time-to-diagnosis in a retrospective cohort of children with suspected leukodystrophy. METHODS: Medical records of patients who attended the leukodystrophy clinic at the Dana-Dwek Children's Hospital between June 2019 and December 2021 were retrieved. Clinical, molecular, and neuroimaging data were reviewed, and the diagnostic yield was compared across genetic tests. RESULTS: Sixty-seven patients (Female/Male ratio 35/32) were included. Median age at symptom onset was 9 months (interquartile range (IQR) 3-18 months), and median length of follow-up was 4.75 years (IQR 3-8.5). Time from symptom onset to a confirmed genetic diagnosis was 15months (IQR 11-30). Pathogenic variants were identified in 60/67 (89.6%) patients; classic leukodystrophy (55/67, 82.1%), leukodystrophy mimics (5/67, 7.5%). Seven patients (10.4%) remained undiagnosed. Exome sequencing showed the highest diagnostic yield (34/41, 82.9%), followed by single-gene sequencing (13/24, 54%), targeted panels (3/9, 33.3%) and chromosomal microarray (2/25, 8%). Familial pathogenic variant testing confirmed the diagnosis in 7/7 patients. A comparison between patients who presented before (n = 31) and after (n = 21) next-generation sequencing (NGS) became clinically available in Israel revealed that the time-to-diagnosis was shorter in the latter group with a median of 12months (IQR 3.5-18.5) vs. a median of 19 months (IQR 13-51) (p = 0.005). CONCLUSIONS: NGS carries the highest diagnostic yield in children with suspected leukodystrophy. Access to advanced sequencing technologies accelerates speed to diagnosis, which is increasingly crucial as targeted treatments become available.


Subject(s)
Genetic Testing , Hereditary Central Nervous System Demyelinating Diseases , Child, Preschool , Female , Humans , Infant , Male , Exome Sequencing , High-Throughput Nucleotide Sequencing , Retrospective Studies , White Matter/pathology , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Hereditary Central Nervous System Demyelinating Diseases/physiopathology , Child , Adolescent , Jews/genetics , Magnetic Resonance Imaging , Founder Effect
7.
Hum Genomics ; 17(1): 30, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36978159

ABSTRACT

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations. METHODS: Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature. RESULTS: The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3. CONCLUSIONS: The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.


Subject(s)
Ethnicity , Genomics , Humans , Ethnicity/genetics , Arabs , Genetic Testing
8.
Prenat Diagn ; 42(12): 1484-1487, 2022 11.
Article in English | MEDLINE | ID: mdl-36221156

ABSTRACT

FETAL PHENOTYPE: A couple of Ashkenazi Jewish descent was referred for an early anatomy scan at 14 + 2 weeks of gestation following a previous pregnancy termination due to posterior encephalocele and enlarged kidneys. The index pregnancy was also positive for several fetal abnormalities, including enlarged kidneys with cystic dysplasia and abnormal cerebellar morphology highly suggestive of Joubert syndrome. GENETIC DIAGNOSTIC TEST PERFORMED, RESULT, AND INTERPRETATION: Trio exome sequencing revealed compound heterozygosity for variants in the TMEM67 gene: a known pathogenic maternally inherited variant found in trans with a paternal intronic variant of unknown significance. RNA analysis revealed that the intronic variant creates a cryptic acceptor splice site in intron 12, leading to the insertion of 22 bp and causing a frameshift with a premature stop codon. This analysis enabled the reclassification of the intronic variant to likely pathogenic. IMPLICATIONS AND NOVELTY: This information empowered the couple to make informed reproductive choices and opt for preimplantation genetic testing (PGT) for future pregnancies.


Subject(s)
Information Dissemination , RNA Splice Sites , Exons , Mutation , Introns
9.
J Mol Neurosci ; 72(8): 1715-1723, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35676594

ABSTRACT

AOA2 is a rare progressive adolescent-onset disease characterised by cerebellar vermis atrophy, peripheral neuropathy and elevated serum alpha-fetoprotein (AFP) caused by pathogenic bi-allelic variants in SETX, encoding senataxin, involved in DNA repair and RNA maturation. Sanger sequencing of genomic DNA, co-segregation and oxidative stress functional studies were performed in Family 1. Trio whole-exome sequencing (WES), followed by SETX RNA and qRT-PCR analysis, were performed in Family 2. Sanger sequencing in Family 1 revealed two novel in-frame SETX deletion and duplication variants in trans (c.7009_7011del; p.Val2337del and c.7369_7371dup; p.His2457dup). Patients had increased induced chromosomal aberrations at baseline and following exposure to higher mitomycin-C concentration and increased sensitivity to oxidative stress at the lower mitomycin-C concentration in cell viability test. Trio WES in Family 2 revealed two novel SETX variants in trans, a nonsense variant (c.568C > T; p.Gln190*), and a deep intronic variant (c.5549-107A > G). Intronic variant analysis and SETX mRNA expression revealed activation of a cryptic exon introducing a premature stop codon (p.Met1850Lysfs*18) and resulting in aberrant splicing, as shown by qRT-PCR analysis, thus leading to higher levels of cryptic exon activation. Along with a second deleterious allele, this variant leads to low levels of SETX mRNA and disease manifestations. Our report expands the phenotypic spectrum of AOA2. Results provide initial support for the hypomorphic nature of the novel in-frame deletion and duplication variants in Family 1. Deep-intronic variant analysis of Family 2 variants potentially reveals a previously undescribed poison exon in the SETX gene, which may contribute to tailored therapy development.


Subject(s)
Apraxias , Poisons , Adolescent , Apraxias/genetics , Apraxias/pathology , Codon, Nonsense , DNA Helicases/genetics , Exons , Humans , Israel , Mitomycin , Multifunctional Enzymes/genetics , Mutation , RNA Helicases/genetics , Spinocerebellar Ataxias/congenital
10.
Front Immunol ; 12: 608604, 2021.
Article in English | MEDLINE | ID: mdl-34248927

ABSTRACT

Background and Objectives: Atypical hemolytic uremic syndrome (aHUS) is mostly attributed to dysregulation of the alternative complement pathway (ACP) secondary to disease-causing variants in complement components or regulatory proteins. Hereditary aHUS due to C3 disruption is rare, usually caused by heterozygous activating mutations in the C3 gene, and transmitted as autosomal dominant traits. We studied the molecular basis of early-onset aHUS, associated with an unusual finding of a novel homozygous activating deletion in C3. Design Setting Participants & Measurements: A male neonate with eculizumab-responsive fulminant aHUS and C3 hypocomplementemia, and six of his healthy close relatives were investigated. Genetic analysis on genomic DNA was performed by exome sequencing of the patient, followed by targeted Sanger sequencing for variant detection in his close relatives. Complement components analysis using specific immunoassays was performed on frozen plasma samples from the patient and mother. Results: Exome sequencing revealed a novel homozygous variant in exon 26 of C3 (c.3322_3333del, p.Ile1108_Lys1111del), within the highly conserved thioester-containing domain (TED), fully segregating with the familial disease phenotype, as compatible with autosomal recessive inheritance. Complement profiling of the patient showed decreased C3 and FB levels, with elevated levels of the terminal membrane attack complex, while his healthy heterozygous mother showed intermediate levels of C3 consumption. Conclusions: Our findings represent the first description of aHUS secondary to a novel homozygous deletion in C3 with ensuing unbalanced C3 over-activation, highlighting a critical role for the disrupted C3-TED domain in the disease mechanism.


Subject(s)
Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Base Sequence/genetics , Complement C3/genetics , Sequence Deletion , Atypical Hemolytic Uremic Syndrome/congenital , Atypical Hemolytic Uremic Syndrome/etiology , Child, Preschool , Complement Activation , Complement Membrane Attack Complex , Genes, Recessive , Homozygote , Humans , Male , Exome Sequencing
12.
J Hum Genet ; 66(11): 1101-1112, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33980986

ABSTRACT

RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.


Subject(s)
Cognitive Dysfunction/genetics , DNA Methylation/genetics , Retinoblastoma-Like Protein p130/genetics , Telomere Shortening/genetics , Adolescent , Adult , Alleles , Animals , Child , Cognitive Dysfunction/complications , Cognitive Dysfunction/physiopathology , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Fibroblasts/metabolism , Genetic Predisposition to Disease , Humans , Male , Methyltransferases/genetics , Mice , Microcephaly/complications , Microcephaly/genetics , Microcephaly/physiopathology , Motor Activity/physiology , Muscle Hypotonia/complications , Muscle Hypotonia/genetics , Muscle Hypotonia/physiopathology , Telomere/genetics , Exome Sequencing
13.
Mol Genet Metab Rep ; 26: 100699, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33457206

ABSTRACT

Iron­sulfur clusters (FeSCs) are vital components of a variety of essential proteins, most prominently within mitochondrial respiratory chain complexes I-III; Fe-S assembly and distribution is performed via multi-step pathways. Variants affecting several proteins in these pathways have been described in genetic disorders, including severe mitochondrial disease. Here we describe a Christian Arab kindred with two infants that died due to mitochondrial disorder involving Fe-S containing respiratory chain complexes and a third sibling who survived the initial crisis. A homozygous missense variant in NFS1: c.215G>A; p.Arg72Gln was detected by whole exome sequencing. The NFS1 gene encodes a cysteine desulfurase, which, in complex with ISD11 and ACP, initiates the first step of Fe-S formation. Arginine at position 72 plays a role in NFS1-ISD11 complex formation; therefore, its substitution with glutamine is expected to affect complex stability and function. Interestingly, this is the only pathogenic variant ever reported in the NFS1 gene, previously described once in an Old Order Mennonite family presenting a similar phenotype with intra-familial variability in patient outcomes. Analysis of datasets from both populations did not show a common haplotype, suggesting this variant is a recurrent de novo variant. Our report of the second case of NFS1-related mitochondrial disease corroborates the pathogenicity of this recurring variant and implicates it as a hot-spot variant. While the genetic resolution allows for prenatal diagnosis for the family, it also raises critical clinical questions regarding follow-up and possible treatment options of severely affected and healthy homozygous individuals with mitochondrial co-factor therapy or cysteine supplementation.

14.
Clin Dysmorphol ; 30(2): 71-75, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-32925198

ABSTRACT

Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.


Subject(s)
Eyelids/abnormalities , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , N-Myc Proto-Oncogene Protein/genetics , Tendons/abnormalities , Thumb/abnormalities , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Adult , Aged , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Models, Molecular , N-Myc Proto-Oncogene Protein/chemistry , Pedigree , Phenotype , Structure-Activity Relationship , Exome Sequencing
15.
Hum Mol Genet ; 29(22): 3662-3678, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33276377

ABSTRACT

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Haploinsufficiency/genetics , Kidney/metabolism , RNA Splicing Factors/genetics , Abnormalities, Multiple/pathology , Anal Canal/abnormalities , Anal Canal/pathology , Animals , Esophagus/abnormalities , Esophagus/metabolism , Esophagus/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Heterozygote , Humans , Kidney/abnormalities , Kidney/pathology , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Loss of Function Mutation/genetics , Mice , RNA Splicing/genetics , Spine/abnormalities , Spine/pathology , Trachea/abnormalities , Trachea/pathology
16.
Int J Mol Sci ; 21(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824094

ABSTRACT

Classical congenital adrenal hyperplasia (CAH) caused by pathogenic variants in the steroid 21-hydroxylase gene (CYP21A2) is a severe life-threatening condition. We present a detailed investigation of the molecular and functional characteristics of a novel pathogenic variant in this gene. The patient, 46 XX newborn, was diagnosed with classical salt wasting CAH in the neonatal period after initially presenting with ambiguous genitalia. Multiplex ligation-dependent probe analysis demonstrated a full deletion of the paternal CYP21A2 gene, and Sanger sequencing revealed a novel de novo CYP21A2 variant c.694-696del (E232del) in the other allele. This variant resulted in the deletion of a non-conserved single amino acid, and its functional relevance was initially undetermined. We used both in silico and in vitro methods to determine the mechanistic significance of this mutation. Computational analysis relied on the solved structure of the protein (Protein-data-bank ID 4Y8W), structure prediction of the mutated protein, evolutionary analysis, and manual inspection. We predicted impaired stability and functionality of the protein due to a rotatory disposition of amino acids in positions downstream of the deletion. In vitro biochemical evaluation of enzymatic activity supported these predictions, demonstrating reduced protein levels to 22% compared to the wild-type form and decreased hydroxylase activity to 1-4%. This case demonstrates the potential of combining in-silico analysis based on evolutionary information and structure prediction with biochemical studies. This approach can be used to investigate other genetic variants to understand their potential effects.


Subject(s)
Computer Simulation , Mutation/genetics , Steroid 21-Hydroxylase/chemistry , Steroid 21-Hydroxylase/genetics , Child, Preschool , Evolution, Molecular , Female , Humans , Infant , Infant, Newborn
17.
J Med Genet ; 57(7): 500-504, 2020 07.
Article in English | MEDLINE | ID: mdl-30858171

ABSTRACT

BACKGROUND: Chromosomal instability, as reflected by structural or copy-number changes, is a known cancer characteristic but are rarely observed in healthy tissue. Mutations in DNA repair genes disrupt the maintenance of DNA integrity and predispose to hereditary cancer syndromes. OBJECTIVE: To clinically characterise and genetically diagnose two reportedly unrelated patients with unique cancer syndromes, including multiorgan tumourogenesis (patient 1) and early-onset acute myeloid leukaemia (patient 2), both displaying unique peripheral blood karyotypes. METHODS: Genetic analysis in patient 1 included TruSight One panel and whole-exome sequencing, while patient 2 was diagnosed by FoundationOne Heme genomic analysis; Sanger sequencing was used for mutation confirmation in both patients. Karyotype analysis was performed on peripheral blood, bone marrow and other available tissues. RESULTS: Both patients were found homozygous for CHEK2 c.499G>A; p.Gly167Arg and exhibited multiple different chromosomal translocations in 30%-60% peripheral blood lymphocytes. This karyotype phenotype was not observed in other tested tissues or in an ovarian cancer patient with a different homozygous missense mutation in CHEK2 (c.1283C>T; p.Ser428Phe). CONCLUSIONS: The multiple chromosomal translocations in patient lymphocytes highlight the role of CHK2 in DNA repair. We suggest that homozygosity for p.Gly167Arg increases patients' susceptibility to non-accurate correction of DNA breaks and possibly explains their increased susceptibility to either multiple primary tumours during their lifetime or early-onset tumourigenesis.


Subject(s)
Checkpoint Kinase 2/genetics , Genetic Predisposition to Disease , Neoplasms/genetics , Translocation, Genetic/genetics , Adult , Aged , Checkpoint Kinase 2/ultrastructure , Female , Homozygote , Humans , Karyotype , Male , Middle Aged , Neoplasms/pathology , Pedigree , Protein Conformation
18.
Eur J Med Genet ; 63(2): 103643, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30922925

ABSTRACT

Majewski Osteodysplastic Primordial Dwarfism type II (MOPDII) is a form of dwarfism associated with severe microcephaly, characteristic skeletal findings, distinct dysmorphic features and increased risk for cerebral infarctions. The condition is caused by bi-allelic loss-of-function variants in the gene PCNT. Here we describe the identification of a novel founder pathogenic variant c.3465-1G > A observed in carriers from multiple Druze villages in Northern Israel. RNA studies show that the variant results in activation of a cryptic splice site causing a coding frameshift. The study was triggered by the diagnosis of a single child with MOPDII and emphasizes the advantages of applying next generation sequencing technologies in community genetics and the importance of establishing population-specific sequencing databases.


Subject(s)
Antigens/genetics , Founder Effect , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Adolescent , Alleles , Cell Line, Tumor , DNA Mutational Analysis , Dwarfism/diagnosis , Dwarfism/genetics , Facies , Female , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , Genetic Association Studies/methods , Genetic Testing , Humans , Israel , Male , Microcephaly/diagnosis , Microcephaly/genetics , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Pedigree , Phenotype , Exome Sequencing
19.
Am J Med Genet A ; 182(1): 205-212, 2020 01.
Article in English | MEDLINE | ID: mdl-31697046

ABSTRACT

Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.


Subject(s)
Agenesis of Corpus Callosum/genetics , DCC Receptor/genetics , Movement Disorders/genetics , Nervous System Malformations/genetics , Agenesis of Corpus Callosum/diagnostic imaging , Agenesis of Corpus Callosum/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Child , Child, Preschool , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiopathology , Female , Genetic Counseling , Heterozygote , Humans , Male , Movement Disorders/diagnostic imaging , Movement Disorders/physiopathology , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/physiopathology , Penetrance , Pregnancy , Prenatal Diagnosis
20.
J Clin Immunol ; 39(4): 430-439, 2019 05.
Article in English | MEDLINE | ID: mdl-31079270

ABSTRACT

PURPOSE: This study aimed to characterize the clinical phenotype, genetic basis, and consequent immunological phenotype of a boy with severe infantile-onset colitis and eosinophilic gastrointestinal disease, and no evidence of recurrent or severe infections. METHODS: Trio whole-exome sequencing (WES) was utilized for pathogenic variant discovery. Western blot (WB) and immunohistochemical (IHC) staining were used for protein expression analyses. Immunological workup included in vitro T cell studies, flow cytometry, and CyTOF analysis. RESULTS: WES revealed a homozygous variant in the capping protein regulator and myosin 1 linker 2 (CARMIL2) gene: c.1590C>A; p.Asn530Lys which co-segregated with the disease in the nuclear family. WB and IHC analyses demonstrated reduced protein levels in patient's cells compared with controls. Moreover, comprehensive immunological workup revealed severely diminished blood-borne regulatory T cell (Treg) frequency and impaired in vitro CD4+ T cell proliferation and Treg generation. CyTOF analysis showed significant shifts in the patient's innate and adaptive immune cells compared with healthy controls and ulcerative colitis patients. CONCLUSIONS: Pathogenic variants in CARMIL2 have been implicated in an immunodeficiency syndrome characterized by recurrent infections, occasionally with concurrent chronic diarrhea. We show that CARMIL2-immunodeficiency is associated with significant alterations in the landscape of immune populations in a patient with prominent gastrointestinal disease. This case provides evidence that CARMIL2 should be a candidate gene when diagnosing children with very early onset inflammatory and eosinophilic gastrointestinal disorders, even when signs of immunodeficiency are not observed.


Subject(s)
Colitis/diagnosis , Colitis/etiology , Enteritis/diagnosis , Enteritis/etiology , Eosinophilia/diagnosis , Eosinophilia/etiology , Gastritis/diagnosis , Gastritis/etiology , Homozygote , Microfilament Proteins/genetics , Mutation , Phenotype , Age of Onset , Amino Acid Sequence , Child , Child, Preschool , DNA Mutational Analysis , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Immunophenotyping , Male , Microfilament Proteins/chemistry , Models, Molecular , Structure-Activity Relationship , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL