Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 28(6): 2433-2444, 2023 06.
Article in English | MEDLINE | ID: mdl-37198260

ABSTRACT

Alzheimer's disease (AD), the leading cause of dementia in older adults, is a double proteinopathy characterized by amyloid-ß (Aß) and tau pathology. Despite enormous efforts that have been spent in the last decades to find effective therapies, late pharmacological interventions along the course of the disease, inaccurate clinical methodologies in the enrollment of patients, and inadequate biomarkers for evaluating drug efficacy have not allowed the development of an effective therapeutic strategy. The approaches followed so far for developing drugs or antibodies focused solely on targeting Aß or tau protein. This paper explores the potential therapeutic capacity of an all-D-isomer synthetic peptide limited to the first six amino acids of the N-terminal sequence of the A2V-mutated Aß, Aß1-6A2V(D), that was developed following the observation of a clinical case that provided the background for its development. We first performed an in-depth biochemical characterization documenting the capacity of Aß1-6A2V(D) to interfere with the aggregation and stability of tau protein. To tackle Aß1-6A2V(D) in vivo effects against a neurological decline in genetically predisposed or acquired high AD risk mice, we tested its effects in triple transgenic animals harboring human PS1(M146 V), APP(SW), and MAPT(P301L) transgenes and aged wild-type mice exposed to experimental traumatic brain injury (TBI), a recognized risk factor for AD. We found that Aß1-6A2V(D) treatment in TBI mice improved neurological outcomes and reduced blood markers of axonal damage. Exploiting the C. elegans model as a biosensor of amyloidogenic proteins' toxicity, we observed a rescue of locomotor defects in nematodes exposed to the brain homogenates from TBI mice treated with Aß1-6A2V(D) compared to TBI controls. By this integrated approach, we demonstrate that Aß1-6A2V(D) not only impedes tau aggregation but also favors its degradation by tissue proteases, confirming that this peptide interferes with both Aß and tau aggregation propensity and proteotoxicity.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Humans , Animals , Mice , Aged , tau Proteins/metabolism , Caenorhabditis elegans/metabolism , Peptide Fragments/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism
2.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615638

ABSTRACT

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , NF-kappa B/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Binding , Inhibitor of Apoptosis Proteins/metabolism , Antineoplastic Agents/pharmacology , Benzodiazepinones/pharmacology , Apoptosis , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...