Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224541

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Female , Humans , Adolescent , Male , DiGeorge Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Psychotic Disorders/complications , Gray Matter/diagnostic imaging
2.
Neuropsychopharmacology ; 49(2): 368-376, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37402765

ABSTRACT

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , DiGeorge Syndrome , Child , Humans , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/complications , DiGeorge Syndrome/genetics , DiGeorge Syndrome/complications , DiGeorge Syndrome/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Cognition , Risk Factors
3.
Am J Psychiatry ; 178(1): 77-86, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33384013

ABSTRACT

OBJECTIVE: Certain copy number variants (CNVs) greatly increase the risk of autism. The authors conducted a genetics-first study to investigate whether heterogeneity in the clinical presentation of autism is underpinned by specific genotype-phenotype relationships. METHODS: This international study included 547 individuals (mean age, 12.3 years [SD=4.2], 54% male) who were ascertained on the basis of having a genetic diagnosis of a rare CNV associated with high risk of autism (82 16p11.2 deletion carriers, 50 16p11.2 duplication carriers, 370 22q11.2 deletion carriers, and 45 22q11.2 duplication carriers), as well as 2,027 individuals (mean age, 9.1 years [SD=4.9], 86% male) with autism of heterogeneous etiology. Assessments included the Autism Diagnostic Interview-Revised and IQ testing. RESULTS: The four genetic variant groups differed in autism symptom severity, autism subdomain profile, and IQ profile. However, substantial variability was observed in phenotypic outcome in individual genetic variant groups (74%-97% of the variance, depending on the trait), whereas variability between groups was low (1%-21%, depending on the trait). CNV carriers who met autism criteria were compared with individuals with heterogeneous autism, and a range of profile differences were identified. When clinical cutoff scores were applied, 54% of individuals with one of the four CNVs who did not meet full autism diagnostic criteria had elevated levels of autistic traits. CONCLUSIONS: Many CNV carriers do not meet full diagnostic criteria for autism but nevertheless meet clinical cutoffs for autistic traits. Although profile differences between variants were observed, there is considerable variability in clinical symptoms in the same variant.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Autistic Disorder/diagnosis , Autistic Disorder/epidemiology , Child , Gene Deletion , Genetic Association Studies , Heterozygote , Humans , Interview, Psychological , Male , Prevalence , Risk Factors , Severity of Illness Index
4.
Am J Psychiatry ; 177(7): 589-600, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32046535

ABSTRACT

OBJECTIVE: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. METHODS: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6-56 years; 49% female). RESULTS: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen's d values, -0.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen's d values, -0.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. CONCLUSIONS: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.


Subject(s)
Brain/pathology , DiGeorge Syndrome/pathology , Mental Disorders/pathology , Psychotic Disorders/pathology , Adolescent , Adult , Atrophy/pathology , Brain Mapping , Case-Control Studies , Child , DiGeorge Syndrome/complications , Female , Humans , Hypertrophy/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Psychotic Disorders/complications , Young Adult
5.
Mol Psychiatry ; 25(11): 2818-2831, 2020 11.
Article in English | MEDLINE | ID: mdl-31358905

ABSTRACT

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.


Subject(s)
DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Adolescent , Adult , Anisotropy , Child , DiGeorge Syndrome/genetics , Female , Humans , Male , Middle Aged , Young Adult
6.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Article in English | MEDLINE | ID: mdl-29895892

ABSTRACT

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Subject(s)
Cerebral Cortex/pathology , Chromosome Deletion , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Adolescent , Adult , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/genetics , Young Adult
7.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31870554

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Heart Defects, Congenital/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Cohort Studies , Female , Genome-Wide Association Study , Heart Defects, Congenital/pathology , Humans , Linkage Disequilibrium , Male , Phenotype , Proto-Oncogene Mas , Segmental Duplications, Genomic
8.
J Psychiatr Res ; 109: 10-17, 2019 02.
Article in English | MEDLINE | ID: mdl-30458299

ABSTRACT

Individuals with 22q11.2 Deletion Syndrome (22q11.2DS) are at substantial increased risk of psychosis spectrum outcomes including schizophrenia. We conducted a prospective, longitudinal study of the psychopathological and neurocognitive correlates of early psychotic phenomena in young people with 22q11.2DS (n = 75, mean age time 1 (T1) 9.9 years, time 2 (T2) 12.5 years). We also assessed unaffected control siblings (n = 33, mean age T1 10.6 years, T2 13.4 years). The prevalence of psychotic experiences, defined as subthreshold psychotic phenomena, substantially increased in children with 22q11.2DS from 4% (n = 3) in childhood (T1) to 21% (n = 16) in early adolescence (T2) (p = 0.001), and at T2 prevalence was significantly elevated (p = 0.020) relative to control siblings (3%). The emergence of psychotic experiences was associated with levels of childhood anxiety symptoms at T1 and differential development of the attention-executive domain. IQ ability and IQ change, however, were not associated with the emergence of psychotic experiences, indicating that initial changes in attention-executive functioning may precede the decline in global cognition that has been reported to be associated with later stages of psychosis development. Our study highlights that psychotic phenomena emerge early in 22q11.2DS and we implicate attention-executive functioning and anxiety as key domains associated with the development of these psychotic experiences.


Subject(s)
Anxiety/physiopathology , Attention/physiology , Cognitive Dysfunction/physiopathology , DiGeorge Syndrome/physiopathology , Executive Function/physiology , Psychotic Disorders/physiopathology , Adolescent , Child , Cognitive Dysfunction/etiology , DiGeorge Syndrome/complications , Female , Humans , Longitudinal Studies , Male , Psychotic Disorders/etiology
9.
Br J Psychiatry ; 211(4): 223-230, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28882829

ABSTRACT

Background22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of childhood as well as adult psychiatric disorders, in particular schizophrenia. Childhood cognitive deterioration in 22q11.2DS has previously been reported, but only in studies lacking a control sample.AimsTo compare cognitive trajectories in children with 22q11.2DS and unaffected control siblings.MethodA longitudinal study of neurocognitive functioning (IQ, executive function, processing speed and attention) was conducted in children with 22q11.2DS (n = 75, mean age time 1 (T1) 9.9, time 2 (T2) 12.5) and control siblings (n = 33, mean age T1 10.6, T2 13.4).ResultsChildren with 22q11.2DS exhibited deficits in all cognitive domains. However, mean scores did not indicate deterioration. When individual trajectories were examined, some participants showed significant decline over time, but the prevalence was similar for 22q11.2DS and control siblings. Findings are more likely to reflect normal developmental fluctuation than a 22q11.2DS-specific abnormality.ConclusionsChildhood cognitive deterioration is not associated with 22q11.2DS. Contrary to previous suggestions, we believe it is premature to recommend repeated monitoring of cognitive function for identifying individual children with 22q11.2DS at high risk of developing schizophrenia.


Subject(s)
Child Development , Cognition Disorders/psychology , DiGeorge Syndrome/psychology , Adolescent , Case-Control Studies , Child , Cognition Disorders/complications , DiGeorge Syndrome/complications , Female , Humans , Longitudinal Studies , Male , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...