ABSTRACT
Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated. Experiments using anti-GPA/GPB antibodies and a GPA-specific epitope nanobody to block HlyA-GP binding on hRBCs, showed no effect on hemolytic activity. Similarly, the hemolysis induced by HlyA remained unaffected when hRBCs from a GPAnull/GPBnull variant were used. Surface Plasmon Resonance experiments revealed similar values of the dissociation constant between GPA and either HlyA, ProHlyA (inactive protoxin), HlyAΔ914-936 (mutant of HlyA lacking the binding domain to GPA) or human serum albumin, indicating that the binding between the proteins and GPA is not specific. Although far Western blot followed by mass spectroscopy analyses suggested that HlyA interacts with Band 3 and spectrins, hemolytic experiments on spectrin-depleted hRBCs and spherocytes, indicated these proteins do not mediate the hemolytic process. Our results unequivocally demonstrate that neither glycophorins, nor Band 3 and spectrins mediate the cytotoxic activity of HlyA on hRBCs, thereby challenging the HlyA-receptor hypothesis. This finding holds significant relevance for the design of anti-toxin therapeutic strategies, particularly in light of the growing antibiotic resistance exhibited by bacteria.
Subject(s)
Escherichia coli Proteins , Toxins, Biological , Humans , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Hemolysin Proteins/pharmacology , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Membrane Proteins/metabolism , Glycophorins/metabolism , Glycophorins/pharmacology , Hemolysis , Erythrocytes/metabolism , Toxins, Biological/metabolismABSTRACT
α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.