Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Immunopharmacol Immunotoxicol ; : 1-10, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308310

ABSTRACT

OBJECTIVE: This study aimed to demonstrate the protective effect of beta-carotene against STZ-induced DN in rats and explore the possible underlying mechanisms that may have mediated such condition. MATERIAL AND METHODS: Wistar rats were allocated into four groups. Normal group received distilled water for 3 weeks. The other three groups were rendered diabetic by an intraperitoneal dose of STZ (50 mg/kg), 48 h later, group 2: received the vehicle and served as control, groups (3 &4) received orally beta-carotene in doses of 10 and 20 mg/kg, respectively for 3 weeks. Then serum and renal tissue were collected for biochemical, molecular, immunohistopathological, and histopathological examination. RESULTS: Beta-carotene ameliorated the reduction in body weight, reduced blood glucose, elevated serum insulin, reduced blood urea nitrogen, and serum creatinine levels. Beta-carotene elevated phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK)/AMPK, alleviated phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR, reduced interleukin 1 beta (IL-1ß), increased Beclin 1, LC3II/LC3I, and reduced p62 renal contents. Moreover, it elevated renal SIRT1 gene expression and reduced renal tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expressions. CONCLUSION: Beta-carotene exerted renoprotective effect against STZ-induced DN and histopathological alterations through alleviating hyperglycemia, attenuating inflammation, activating AMPK/SIRT1/autophagy pathway, and combating apoptosis.

2.
Sci Rep ; 14(1): 13559, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866877

ABSTRACT

Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.


Subject(s)
Antidepressive Agents , Diabetes Mellitus, Experimental , Flavanones , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , PPAR gamma , Animals , Flavanones/pharmacology , Flavanones/administration & dosage , Flavanones/chemistry , PPAR gamma/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Nanoparticles/chemistry , Rats , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Signal Transduction/drug effects , Streptozocin , Rats, Wistar , Anilides
3.
Article in English | MEDLINE | ID: mdl-38789632

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a highly prevalent condition affecting reproductive-aged women, causing insulin resistance, hyperandrogenism, weight gain, and menstrual problems. The present study intended to investigate the potential role of fisetin (FT) in letrozole (LZ)-induced PCOS in adult female rats and the possible mechanism underlying its action. PCOS was induced by oral administration of LZ (1 mg/kg) for 21 days. Treated rats received FT (1.25 or 2.5 mg/kg) orally once daily for 14 consecutive days. Following the experimental duration, blood samples and ovary tissues were isolated and preserved for biochemical and histopathological examinations. The results revealed that LZ-induced PCOS led to significant abnormalities in sex hormones and metabolic parameters. Additionally, it initiated an inflammatory cascade, evidenced by activation of the NF-κB p65/IL-1ß and AMPK/PI3K/AKT pathways, alongside downregulation of Nrf2 ovarian gene expression and NLRP3 inflammasome activity, which enhanced the production of proinflammatory cytokines. FT demonstrated its beneficial impacts by restoring hormonal disturbance and reversing the imbalanced metabolic parameters. Moreover, FT increased the mRNA of ovarian Nrf2 levels and suppressed the up-regulated inflammatory IL-1ß/NF-κB p65 signaling pathway, consequently alleviating the elevated levels of ovarian NLRP3. The histopathological examination also confirmed that FT has a beneficial effect in ameliorating PCOS, consistent with the aforementioned parameters. Finally, the present results demonstrated that FT ameliorates LZ-induced PCOS through the intricate interplay between the AMPK/PI3K/AKT-mediated Nrf2 antioxidant defense mechanism and the regulation of the inflammasome NLRP3/NF-κB p65/IL-1ß signaling pathways.

4.
Adv Pharmacol Pharm Sci ; 2024: 6681873, 2024.
Article in English | MEDLINE | ID: mdl-38293706

ABSTRACT

This research investigated if pitavastatin (Pita) might protect rats' kidneys against thioacetamide (TAA). By altering the PTEN/AKT/mTOR pathway, pitavastatin may boost kidney antioxidant capacity and minimize oxidative damage. Statins have several benefits, including antioxidant and anti-inflammatory characteristics. The principal hypothesis of this study was that Pita can regulate the miR-93/PTEN/AKT/mTOR pathways, which is thought to be responsible for its renoprotective effects. The experiment divided male rats into four groups. Group 1 included untreated rats as the control. Group 2 included rats which received TAA (100 mg/kg intraperitoneally thrice a week for two weeks) to destroy their kidneys. Groups 3 and 4 included rats which received Pita orally at 0.4 and 0.8 mg/kg for 14 days after TAA injections. Renal injury increased BUN, creatinine, and MDA levels and decreased glutathione (GSH) levels. Pitavastatin prevented these alterations. TAA decreased PTEN and increased miR-93, Akt, p-Akt, mTOR, and Stat3 in the kidneys. Pitavastatin also regulated the associated culprit pathway, miR-93/PTEN/Akt/mTOR. In addition, TAA induced adverse effects on the kidney tissue, which were significantly ameliorated by pitavastatin treatment. The findings suggest that pitavastatin can attenuate renal injury, likely by regulating the miR-93/PTEN/Akt/mTOR pathway. This modulation of the pathway appears to contribute to the protective effects of pitavastatin against TAA-induced renal injury, adding to the growing evidence of the pleiotropic benefits of statins in renal health.

6.
Oxid Med Cell Longev ; 2023: 5514248, 2023.
Article in English | MEDLINE | ID: mdl-37649466

ABSTRACT

Erythropoietin (EPO) is recognized for its function in erythropoiesis; however, its potential antifibrotic effect against liver fibrosis remains unknown. This study examined whether EPO affects thioacetamide (TAA)-induced liver fibrosis by concentrating on the Toll-like receptor 4 (TLR4) cascade and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as possible pathways. Male Wistar rats were randomized into four groups, which included: the negative control group, the TAA group (intraperitoneal; TAA 100 mg/kg three times per week for 2 weeks), and EPO-treated groups (150 and 300 IU/kg, i.p.) for 2 weeks after TAA injections. EPO attenuated hepatic fibrosis in a dosage-dependent way, as manifested by the diminution in serum alanine aminotransferase and aspartate aminotransferase activities, as well as the increase in albumin level. EPO inhibited the increase in tissue levels of tumor necrosis factors-α, interleukin-1ß, transforming growth factor-ß1, and TLR4 and raised tissue levels of PI3K and p-PI3K. EPO antioxidant properties were demonstrated by restoring hepatic glutathione and superoxide dismutase by preventing the accumulation of hepatic malondialdehyde. Further, EPO increased the protein expression of PI3K and Akt and decreased TLR4 protein expression. Immunohistochemically, EPO treatment altered tissue histology and downregulated mitogen-activated protein kinase protein expression. Overall, the research suggested that EPO could prevent TAA-induced hepatic fibrosis through upregulating the PI3K/Akt signaling cascade and downregulation the TLR4 downstream axis.


Subject(s)
Erythropoietin , Phosphatidylinositol 3-Kinases , Male , Rats , Animals , Rats, Wistar , Proto-Oncogene Proteins c-akt , Thioacetamide/toxicity , Phosphatidylinositol 3-Kinase , Toll-Like Receptor 4 , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Signal Transduction
7.
Chem Biol Interact ; 375: 110402, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36804429

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Chrysin (CHY) has many biological properties but poor oral bioavailability. This study investigates the effect of CHY and CHY-loaded nanovesicles (CHY-NVs) on streptozotocin (STZ)-induced DPN in rats. CHY-NVs were prepared by using film hydration method. The formula with the best entrapment efficiency%, lowest particle size, highest zeta potential, and highest in vitro CHY released profile was selected, characterized by Differential scanning calorimetry, Fourier transformation infrared spectroscopy analysis, and examined by Transmission electron microscope. Acute toxicity test, pharmacokinetic study and experimental model of diabetes mellitus were performed on the selected formulation. Wistar rats were considered diabetic by administration of a single intraperitoneal dose of STZ (50 mg/kg). 48 h after STZ administration, hyperglycemic rats were randomly assigned into four groups, one group of untreated hyperglycemic rats and the other three groups received daily oral doses of unloaded NVs, CHY-NVs (25 mg/kg), and CHY-NVs (50 mg/kg), respectively for 21 days. Moreover, five additional groups of healthy rats received: distilled water (control), free CHY, unloaded NVs, and CHY-NVs respectively for 21 days. CHY and CHY-NVs maintained body weight and reduced STZ-induced behavioral changes in rotarod, hind paw cold allodynia, tail cold allodynia, tail flick, and hot plate tests. CHY and CHY-NVs lowered blood glucose, glycated hemoglobin, elevated serum reduced glutathione (GSH), and reduced plasma malondialdehyde (MDA) levels. CHY-NVs elevated phosphatidylinositol 3-kinase (Pi3k), phosphorylated protein kinase B (p-AKT), and reduced nuclear factor kappa B (NF-κB), interleukin-6 (IL-6) in sciatic nerve homogenate. CHY and CHY-NVs increased nerve growth factor (NGF) and decreased glycogen synthase kinase-3ß (GSK-3ß) gene expressions in the sciatic nerve. In conclusion, CHY and CHY-NVs ameliorated STZ-induced DPN behavioral and histopathological changes via attenuating hyperglycemia, exerting anti-oxidant, anti-inflammatory effects, activating NGF/p-AKT/GSK-3ß pathway, and its anti-apoptotic effect. The best pharmacokinetic profile and therapeutic effect was observed in rats treated with CHY-loaded NVs.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta , Rats, Wistar , Diabetic Neuropathies/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Nerve Growth Factor , Hyperalgesia , Streptozocin
8.
Front Physiol ; 13: 953206, 2022.
Article in English | MEDLINE | ID: mdl-36035473

ABSTRACT

Encephalopathy is a frequent and lethal consequence of sepsis. Recently, a growing body of evidence has provided important insights into the role of iron dyshomeostasis in the context of inflammation. The molecular mechanisms underlying iron dyshomeostasis and its relationship with macrophage phenotypes are largely unknown. Here, we aimed to characterize the changes in iron-transporter and storage proteins and the microglia phenotype that occur during the course of sepsis, as well as their relationship with sepsis-induced encephalopathy. We used a cecal ligation and puncture (CLP) murine model that closely resembles sepsis-induced encephalopathy. Rats were subjected to CLP or sham laparotomy, then were neurologically assessed at 6 h, 24 h, and 3 days after sepsis induction. The serum and brain were collected for subsequent biochemical, histological, and immunohistochemical assessment. Here, an iron excess was observed at time points that followed the pro-inflammatory macrophage polarization in CLP-induced encephalopathy. Our results revealed that the upregulation of non-transferrin-bound iron uptake (NTBI) and ferritin reduction appeared to be partially responsible for the excess free iron detected within the brain tissues. We further demonstrated that the microglia were shifted toward the pro-inflammatory phenotype, leading to persistent neuro-inflammation and neuronal damage after CLP. Taken together, these findings led us to conclude that sepsis increased the susceptibility of the brain to the iron burden via the upregulation of NTBI and the reduction of ferritin, which was concomitantly and correlatively associated with dominance of pro-inflammatory microglia and could explain the neurological dysfunction observed during sepsis.

9.
Arch Pharm Res ; 45(7): 475-493, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35767208

ABSTRACT

Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers' count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1ß), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA's beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , MicroRNAs , Sodium-Glucose Transporter 2 Inhibitors , Animals , Rats , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Glucose , Glucosides , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Streptozocin
10.
Biomed Pharmacother ; 145: 112395, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34775239

ABSTRACT

Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-ß. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-ß/PKC/TRPV1/SP pathways.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Inosine/pharmacology , Neuroprotective Agents/pharmacology , Animals , Caffeine/pharmacology , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Male , Niacinamide , Oxidative Stress/drug effects , Rats , Rats, Wistar , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism , Signal Transduction/drug effects , Streptozocin
11.
Heliyon ; 7(2): e06205, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33644474

ABSTRACT

BACKGROUND: The plant kingdom is considered one of the most common sources for structural and biological diversity. In particular, the wild category acquires our attention to investigate the phytochemical and the biological evaluations. METHODS: Dobera glabra was exposed to phytochemical examination using HPLC-ESI-MS analysis. Furthermore, the anti-inflammatory activity was evaluated using carrageenan-induced rat paw edema model, whereas both the central and peripheral analgesic activities were tested via hot plate test in rats and acetic acid-induced writhing in mice, respectively. RESULTS: Twenty phenolic compounds of D. glabra aqueous leaves extract were emphasized by liquid chromatography coupled with mass spectrometry. Moreover, D. glabra exhibited both anti-inflammatory and peripheral analgesic activities. Furthermore, D. glabra significantly decreased the immune expression of MMP-9, TNF-α and TGF-ß1 in the hind paw of rats. CONCLUSION: D. glabra possess peripheral anti-nociceptive and anti-inflammatory effects in rats mediated through its anti-oxidant and anti-inflammatory activities. The activity of D. glabra leaves extract might be attributed to the presence of hydroxy and keto structures.

12.
Inflammation ; 41(4): 1460-1476, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29704151

ABSTRACT

The peripheral nervous system is one of many organ systems that can be profoundly impacted in diabetes mellitus. Diabetic peripheral neuropathy has a significant negative effect on patients' quality of life as it begins with loss of limbs' sensation and may result in lower limb amputation. This investigation aimed at exploring the effect of sulforaphane on peripheral neuropathy in diabetic rats. Experimental diabetes was induced through single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were divided into five groups. Two groups were treated with saline or sulforaphane (1 mg/kg, p.o.). Three diabetic groups were either untreated or given sulforaphane (1 mg/kg, p.o.) or pregabalin (10 mg/kg, i.p.). Two weeks after drugs' administration, biochemical, behavioral, histopathological, and immunohistochemical investigations were carried out. Treatment with sulforaphane restored animals' body weight, reduced blood glucose, glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of tail flick test, increased the latency withdrawal time of cold allodynia test, and ameliorated histopathological changes. Treatment of sulforaphane, likewise, decreased sciatic nerve malondialdehyde, nitric oxide, interleukin-6, and matrix metalloproteinase-2 and -9 contents. Similarly, it reduced sciatic nerve DNA fragmentation and expression of cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it increased sciatic nerve superoxide dismutase and interleukin-10 contents. These results reveal the neuroprotective effect of sulforaphane against peripheral neuropathy in diabetic rats possibly through modulating oxidative stress, inflammation, and extracellular matrix remodeling. Graphical Abstract Diagram that illustrates the effects of sulforaphane in treating experimental diabetic peripheral neuropathy. In NA-STZ model of diabetes mellitus, sulforaphane, restored animals' body weight, reduced blood glucose, glycated hemoglobin and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of tail flick test, increased the latency withdrawal time of cold allodynia test and ameliorated histopathological changes. Treatment of sulforaphane, likewise, decreased sciatic nerve malondialdehyde, nitric oxide, interleukin-6, matrix metalloproteinase-2 and -9 contents. Similarly, it reduced sciatic nerve DNA fragmentation and expression of cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it increased sciatic nerve superoxide dismutase and interleukin-10 contents.


Subject(s)
Diabetic Neuropathies/drug therapy , Extracellular Matrix/metabolism , Inflammation/drug therapy , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Animals , Anticarcinogenic Agents , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/pathology , Extracellular Matrix/drug effects , Psychomotor Performance/drug effects , Rats , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Sulfoxides
13.
J Neurochem ; 146(2): 173-185, 2018 07.
Article in English | MEDLINE | ID: mdl-29572844

ABSTRACT

Diabetic peripheral neuropathy is one of the most common microvascular complications that occurs with both type 1 and type 2 diabetes mellitus. It has a significant negative impact on patients' quality of life; as it starts with loss of limbs' sensation and may lead to lower limb amputation. This study aimed at investigating the effect of liraglutide on peripheral neuropathy in diabetic rats. Experimental diabetes was induced by single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were allocated into five groups. Two groups were given saline or liraglutide (0.8 mg/kg, s.c.). Three diabetic groups were either untreated or treated with liraglutide (0.8 mg/kg, s.c.) or pregabalin (10 mg/kg, i.p.). After 2 weeks of treatment, behavioral, biochemical, histopathological, and immunohistochemical investigations were performed. Treatment with liraglutide-restored animals' body weight, normalized blood glucose, decreased glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of both tail flick and hind paw cold allodynia tests and reversed histopathological alterations. Treatment with liraglutide also normalized malondialdehyde, matrix metalloproteinase-2 and -9 contents in sciatic nerve. Likewise, it decreased sciatic nerve nitric oxide and interleukin-6 contents, DNA fragmentation and expression of cyclooxygenase-2. Meanwhile, it increased superoxide dismutase and interleukin-10 contents in sciatic nerve. These findings indicate the neuroprotective effect of liraglutide against diabetic peripheral neuropathy probably via modulating oxidative stress, inflammation, and extracellular matrix remodeling.


Subject(s)
Diabetic Neuropathies/drug therapy , Extracellular Matrix/drug effects , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Liraglutide/therapeutic use , Oxidative Stress/drug effects , Animals , Antibiotics, Antineoplastic , Blood Glucose/metabolism , Body Weight/drug effects , Diabetic Neuropathies/chemically induced , Diabetic Neuropathies/complications , Disease Models, Animal , Glycated Hemoglobin/metabolism , Male , Matrix Metalloproteinases/metabolism , Niacinamide/toxicity , Pain Threshold/drug effects , Rats , Rats, Wistar , Streptozocin/toxicity , Vitamin B Complex/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL