Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37739089

ABSTRACT

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Bromodomain Containing Proteins , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Gemcitabine , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Smad2 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nat Commun ; 14(1): 5685, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709746

ABSTRACT

Pancreatic cancer (PC), one of the most aggressive and life-threatening human malignancies, is known for its resistance to cytotoxic therapies. This is increasingly ascribed to the subpopulation of undifferentiated cells, known as pancreatic cancer stem cells (PCSCs), which display greater evolutionary fitness than other tumor cells to evade the cytotoxic effects of chemotherapy. PCSCs are crucial for tumor relapse as they possess 'stem cell-like' features that are characterized by self-renewal and differentiation. However, the molecular mechanisms that maintain the unique characteristics of PCSCs are poorly understood. Here, we identify the histone methyltransferase KMT2A as a physical binding partner of an RNA polymerase-associated PHF5A-PHF14-HMG20A-RAI1 protein subcomplex and an epigenetic regulator of PCSC properties and functions. Targeting the protein subcomplex in PCSCs with a KMT2A-WDR5 inhibitor attenuates their self-renewal capacity, cell viability, and in vivo tumorigenicity.


Subject(s)
Pancreas , Pancreatic Neoplasms , Humans , Neoplastic Stem Cells , Pancreatic Neoplasms/genetics , Research Personnel , Histone Methyltransferases , High Mobility Group Proteins , Trans-Activators , RNA-Binding Proteins , Intracellular Signaling Peptides and Proteins
3.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909530

ABSTRACT

The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signalling pathway. Inhibition and genetic ablation of BDR9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.

4.
Oncotarget ; 7(26): 39654-39670, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27166257

ABSTRACT

Mutations affecting Gαq proteins are pervasive in uveal melanoma (UM), suggesting they 'drive' UM pathogenesis. The ERK1/2-MAPK pathway is critical for cutaneous melanoma development and consequently an important therapeutic target. Defining the contribution of ERK1/2-MAPK signalling to UM development has been hampered by the lack of an informative animal model that spontaneously develops UM. Towards this end, we engineered transgenic zebrafish to express oncogenic GNAQQ209P in the melanocyte lineage. This resulted in hyperplasia of uveal melanocytes, but with no evidence of malignant progression, nor perturbation of skin melanocytes. Combining expression of oncogenic GNAQQ209P with p53 inactivation resulted in earlier onset and even more extensive hyperplasia of uveal melanocytes that progressed to UM. Immunohistochemistry revealed only weak immunoreactivity to phosphorylated (p)ERK1/2 in established uveal tumours-in contrast to strong immunoreactivity in oncogenic RAS-driven skin lesions-but ubiquitous positive staining for nuclear Yes-associated protein (YAP). Moreover, no changes were observed in pERK1/2 levels upon transient knockdown of GNAQ or phospholipase C-beta (PLC-ß) inhibition in the majority of human UM cell lines we tested harbouring GNAQ mutations. In summary, our findings demonstrate a weak correlation between oncogenic GNAQQ209P mutation and sustained ERK1/2-MAPK activation, implying that ERK1/2 signalling is unlikely to be instrumental in the maintenance of GNAQQ209P-driven UMs.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , MAP Kinase Signaling System , Uveal Neoplasms/enzymology , Animals , Animals, Genetically Modified , Carcinogens , Cell Line , Cell Lineage , DNA Transposable Elements , Gene Expression Profiling , Genes, p53 , Humans , Immunohistochemistry , Melanocytes/metabolism , Mutation , Signal Transduction , Uveal Neoplasms/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...