Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Article in English | MEDLINE | ID: mdl-39307914

ABSTRACT

BACKGROUND: Insulin resistance (IR), hyperuricemia (HUA), and recurrent pregnancy loss (RPL) elevate the risk of cardiovascular disease and metabolic disorders, while also impacting reproductive health. The relationship between IR, HUA, and RPL has not been thoroughly investigated. This study investigates the relationship between four IR surrogates and the risk of HUA in RPL patients. METHODS: Data from a real-world study on RPL in China were analyzed using multivariable regression to determine the relationship between HUA and triglyceride and glucose (TyG) index, triglyceride glucose-body mass index (TyG-BMI), triglyceride to high-density lipoprotein cholesterol (TG/HDL-c) ratio, and metabolic score for insulin resistance (METS-IR). The predictive ability of these surrogates for detecting HUA in RPL patients was evaluated using the area under the curve and receiver operating characteristic analysis. Sensitivity analysis was performed using bootstrapping resampling. RESULTS: The study included 769 patients with a mean age of 30 ± 4 years old, 8.32% of whom had HUA. Four IR surrogates were closely related to HUA in patients of RPL after adjusting for age, menstrual cycle, creatinine, alanine transaminase, aspartate transaminase, total cholesterol, homocysteine, and low-density lipoprotein, with area under the curve values of TyG index (OR = 0.693, 95% confidence interval [CI]: 0.626, 0.759), TyG-BMI (OR = 0.731 95% CI: 0.657, 0.805), TG/HDL-C (OR = 0.703, 95% CI: 0.641, 0.764), and METS-IR (OR = 0.728, 95% CI: 0.655, 0.799). Bootstrap resampling yielded similar results. CONCLUSIONS: The TyG index, TyG-BMI, TG/HDL-c, and METS-IR significantly correlated with HUA in patients with RPL. The TyG-BMI had the highest predictive value of the four IR surrogates.

2.
Yi Chuan ; 45(5): 447-458, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37194591

ABSTRACT

Neuregulin 4 (NRG4) is an important adipocytokine, which plays crucial roles in maintaining energy balance, regulating glucose and lipid metabolism, and preventing non-alcoholic fatty liver disease in mammals. At present, the genomic organization, transcript and protein isoforms of human NRG4 gene have been fully explored. Previous studies in our laboratory have shown that the NRG4 gene is expressed in chicken adipose tissue, but the chicken NRG4 (cNRG4) genomic structure, transcript and protein isoforms are still unknown. To this end, in this study, the genomic and transcriptional structure of the cNRG4 gene were systematically investigated using rapid amplification of cDNA ends (RACE) and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the coding region (CDS) of the cNRG4 gene was small, but it had a very complex transcriptional structure characterized by multiple transcription start sites, alternative splicing, intron retention, cryptic exons, and alternative polyadenylation, thus leading to production of four 5?UTR isoforms (cNRG4 A, cNRG4 B, cNRG4 C, and cNRG4 D) and six 3?UTR isoforms (cNRG4 a, cNRG4 b, cNRG4 c, cNRG4 d, cNRG4 e, and cNRG4 f) of the cNRG4 gene. The cNRG4 gene spanned 21,969 bp of genomic DNA (Chr.10:3,490,314~3,512,282) and consisted of 11 exons and 10 introns. Compared with the cNRG4 gene mRNA sequence (NM_001030544.4), two novel exons and one cryptic exon of the cNRG4 gene were identified in this study. Bioinformatics analysis, RT-PCR, cloning and sequencing analysis showed that the cNRG4 gene could encode three protein isoforms (cNRG4-1, cNRG4-2 and cNRG4-3). This study lays a foundation for further research on the function and regulation of the cNRG4 gene.


Subject(s)
Alternative Splicing , Chickens , Animals , Alternative Splicing/genetics , Base Sequence , Chickens/genetics , DNA, Complementary/genetics , Genomics , Introns/genetics , Neuregulins/genetics , Protein Isoforms/genetics
3.
J Agric Food Chem ; 70(47): 14959-14973, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36383077

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipogenesis and is expressed as two isoforms, PPARγ1 and PPARγ2. Our previous lentiviral overexpression study showed that PPARγ1 and PPARγ2 differentially regulated proliferation, differentiation, and apoptosis of the immortalized chicken preadipocyte cell line (ICP2). However, we cannot rule out the possibility that the endogenous expression of PPARγ isoforms may compromise our findings. In this study, using the dual sgRNA-directed CRISPR/Cas9 system, we generated PPARγ (PPARγ-/-) and PPARγ2-specific knockout (PPARγ2-/-) ICP2 cell lines and investigated the differences in proliferation and differentiation among PPARγ-/-, PPARγ2-/-, and wild-type ICP2 cells. EdU proliferation assay showed that both PPARγ2-specific and PPARγ knockouts significantly increased the proliferation rates. Consistently, real-time RT-PCR analysis showed that both PPARγ2-specific and PPARγ knockouts significantly upregulated the expression of proliferation marker genes PCNA and cyclinD1. FACS analysis revealed that PPARγ knockout significantly increased the number of cells accumulating in the S phase and decreased the number of cells accumulating in the G1/G0 phase. Oil Red O staining and gene expression analysis showed both PPARγ2-specific and PPARγ knockouts dramatically reduced capacity for adipogenic differentiation. To corroborate our previous findings, PPARγ1 and PPARγ2 expression were restored in PPARγ-/- cells by using the lentiviruses expressing chicken PPARγ1 (LV-PPARγ1) and PPARγ2 (LV-PPARγ2), respectively. Subsequent assays showed that restoration of expression of either PPARγ1 or PPARγ2 suppressed proliferation and stimulated differentiation of the PPARγ-/- cells. By comparison, PPARγ2 had stronger anti-proliferative and pro-adipogenic effects than PPARγ1. To understand the molecular mechanism underlying their differential effects on differentiation of the PPARγ-/- cells, we performed RNA-seq in the PPARγ-/- cells in which individual PPARγ isoform expression was restored at 72 h of differentiation. Transcriptomic analysis revealed that restoring PPARγ1 expression caused far more differentially expressed genes (DEGs) than restoring PPARγ2 expression. GO and KEGG pathway enrichment analyses indicated that PPARγ1 and PPARγ2 had distinct and overlapping functions in adipogenesis. Taken together, our results clearly indicate that PPARγ1 and PPARγ2 differentially impact chicken adipogenesis.


Subject(s)
Adipogenesis , PPAR gamma , Animals , PPAR gamma/genetics , Adipogenesis/genetics , Transcription Factors/genetics , Chickens/genetics , Chickens/metabolism , Cells, Cultured , Protein Isoforms/genetics
4.
Poult Sci ; 101(12): 102169, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36201879

ABSTRACT

Transforming growth factor beta receptor Ⅱ (TGFBR2), a core member of the transforming growth factor-ß (TGF-ß) signaling pathway. To date, chicken TGFBR2 (cTGFBR2) genomic structure has not been fully explored. Here, the complete sequences of cTGFBR2 transcript isoforms were determined by 5' and 3' rapid amplification of cDNA ends (5' & 3' RACE) and reverse transcription polymerase chain reaction (RT-PCR); the tissue expression profiling of cTGFBR2 transcript isoforms was performed using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that cTGFBR2 gene produced 3 transcript isoforms though alternative transcription initiation, splicing, and polyadenylation, which were designated as cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3, respectively. These 3 cTGFBR2 transcript isoforms encoded 3 protein isoforms: cTGFBR2-1, cTGFBR2-2, and cTGFBR2-3. Duplication analysis revealed that, unlike other animal species, cTGFBR2 gene harbored a 5.5-kb intragenic tandem duplication. Tissue expression profiling in the 4-wk-old Arbor Acres (AA) broiler chickens showed that cTGFBR2-1 was ubiquitously expressed, with high expression in abdominal fat, subcutaneous fat, lung, gizzard, and muscle; cTGFBR2-2 was highly expressed in heart, kidney, gizzard, and muscle; cTGFBR2-3 was weakly expressed in all the tested chicken tissues. Tissue expression profiling in the 7-wk-old broiler chickens of the fat and lean lines of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) showed that cTGFBR2-1 was significantly differentially expressed in all the tested tissues except heart, cTGFBR2-2 was significantly differentially expressed in all the tested tissues except subcutaneous fat and liver, and cTGFBR2-3 was significantly differentially expressed in all the tested tissues between the lean and fat lines. Intriguingly, in the fat line, the 3 cTGFBR2 transcript isoforms were expressed to varying degrees in all the 3 tested fat tissues, while in the lean line, only cTGFBR2-1 was expressed in all the 3 tested fat tissues. This is the first report of intragenic tandem duplication within TGFBR2 gene. Our findings pave the way for further studies on the functions and regulation of cTGFBR2 gene.


Subject(s)
Abdominal Fat , Chickens , Animals , Receptor, Transforming Growth Factor-beta Type II/metabolism , Abdominal Fat/metabolism , Protein Isoforms/metabolism , Genomics
5.
Foods ; 11(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626995

ABSTRACT

Polyphenols, the most abundant components in tea, determine the quality and health function of tea. The analysis of polyphenols in tea is a topic of increasing interest. However, the complexity of the tea matrix, the wide variety of teas, and the difference in determination purposes puts forward higher requirements for the detection of tea polyphenols. Many efforts have been made to provide a highly sensitive and selective analytical method for the determination and characterization of tea polyphenols. In order to provide new insight for the further development of polyphenols in tea, in the present review we summarize the recent literature for the detection of tea polyphenols from the perspectives of determining total polyphenols and individual polyphenols in tea. There are a variety of methods for the analysis of total tea polyphenols, which range from the traditional titration method, to the widely used spectrophotometry based on the color reaction of Folin-Ciocalteu, and then to the current electrochemical sensor for rapid on-site detection. Additionally, the application of improved liquid chromatography (LC) and high-resolution mass spectrometry (HRMS) were emphasized for the simultaneous determination of multiple polyphenols and the identification of novel polyphenols. Finally, a brief outline of future development trends are discussed.

6.
Front Psychol ; 13: 823333, 2022.
Article in English | MEDLINE | ID: mdl-36619048

ABSTRACT

Career-related support from parents and teachers plays an essential role in the process of promoting young people's career development. This study examined the relationship between parents' and teachers' career-related support and career adaptability among Chinese male primary school preservice teachers (N = 772). The participants completed the Career Adapt-Abilities Scale-Short Version (CAAS), the Career-Related Parental Support Scale (CRPSS), and the Career-Related Teacher Support Scale (CRTSS). Results showed that a high level of emotional support from parents and teachers had more effects on the career adaptability of Chinese male primary school preservice teachers then other aspects in the scale, and teachers' emotional support is more important than parents' emotional support. Notably, there is a complex correlation among education level and occupation of parents and their children's occupational adaptability. These findings carry implications for supporting teachers and parents in facilitating preservice teachers' career adaptability. Future research could identify the differential effects of different forms of teacher support and parental support relate to career adaptability.

7.
Front Genet ; 12: 678667, 2021.
Article in English | MEDLINE | ID: mdl-34239543

ABSTRACT

Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-ß superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.

8.
Nat Commun ; 12(1): 3021, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34021141

ABSTRACT

Tuning metal-support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure-activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal-support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure-activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt-H/Pt-OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.

9.
Zhongguo Zhong Yao Za Zhi ; 46(3): 678-684, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645035

ABSTRACT

The purpose of this study was to understand the pharmacodynamic effect of Valeriana jatamansi extract in diarrhea predominant irritable bowel syndrome(IBS-D) rat model induced by maternal separation combined with three kinds of stress, and observe the changes of endogenous metabolites in feces after intervention to find potential biomarkers and related metabolic pathways. The animal model of IBS-D was established by maternal separation combined with restraint, ice swimming and tail clamping. The therapeutic effect of each dose group of V. jatamansi extract was evaluated in terms of abdominal withdrawal reflex pressure threshold, fecal water content and immobility time of forced swimming test. In addition, rat feces were collected for detection of metabolic profiles of small molecular metabolites with UPLC-LTQ-Orbitrap MS platform, so as to find the biomarkers of differential metabolism with multivariate statistical analysis methods such as principal component analysis(PCA) and orthogon partial least squares discrimination analysis(OPLS-DA). The results showed that as compared with the normal group, the threshold of abdominal withdrawal reflex pressure was decreased, the fecal water content was increased, and the immobility time of forced swimming test was prolonged in the model group. The results of fecal metabonomics showed that the levels of 39 metabolites were down-regulated and those of 37 metabolites were up-re-gulated. Further analysis showed that these metabolites were related to bile acid metabolism, unsaturated fatty acid metabolism, amino acid metabolism, ceramide metabolism and other metabolic pathways. This study proved that the extract of V. jatamansi had definite pharmacodynamic effect on IBS-D model rats, and the mechanism was discussed from the perspective of fecal metabonomics.


Subject(s)
Irritable Bowel Syndrome , Valerian , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Diarrhea , Feces , Irritable Bowel Syndrome/drug therapy , Maternal Deprivation , Metabolomics , Rats , Tandem Mass Spectrometry
10.
Front Cell Dev Biol ; 9: 627102, 2021.
Article in English | MEDLINE | ID: mdl-33634127

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulatory factor of preadipocyte differentiation. As a result of alternative splicing and alternative promoter usage, PPARγ gene generates multiple transcript variants encoding two protein isoforms. Krüppel-like factor 2 (KLF2) plays a negative role in preadipocyte differentiation. However, its underlying mechanism remains incompletely understood. Here, we demonstrated that KLF2 inhibited the P1 promoter activity of the chicken PPARγ gene. Bioinformatics analysis showed that the P1 promoter harbored a conserved putative KLF2 binding site, and mutation analysis showed that the KLF2 binding site was required for the KLF2-mediated transcription inhibition of the P1 promoter. ChIP, EMSA, and reporter gene assays showed that KLF2 could directly bind to the P1 promoter regardless of methylation status and reduced the P1 promoter activity. Consistently, histone modification analysis showed that H3K9me2 was enriched and H3K27ac was depleted in the P1 promoter upon KLF2 overexpression in ICP1 cells. Furthermore, gene expression analysis showed that KLF2 overexpression reduced the endogenous expression of PPARγ transcript variant 1 (PPARγ1), which is driven by the P1 promoter, in DF1 and ICP1 cells, and that the inhibition of ICP1 cell differentiation by KLF2 overexpression was accompanied by the downregulation of PPARγ1 expression. Taken together, our results demonstrated that KLF2 inhibits chicken preadipocyte differentiation at least inpart via direct downregulation of PPARγ1 expression.

11.
Yi Chuan ; 43(1): 4-15, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33509770

ABSTRACT

During the maturation of pre-mRNAs and some lncRNAs, their 3'ends are cleaved and polyadenylated. The cleavage and polyadenylation (C/P) require the presence of a polyadenylation signal (PAS) at the RNA 3?end. Most eukaryotic genes have multiple PASs, resulting in alternative cleavage and polyadenylation (APA). APA leads to transcript isoforms with different coding potentials and/or variable 3?UTRs. The 3'UTR affects mRNA stability, translation, transportation, and cellular localization. Therefore, APA is an important mechanism of posttranscriptional gene regulation in eukaryotes. In recent years, whole genome sequencing of animals, plants and yeast has revealed that APA is pervasive in eukaryotes, and the functional consequences and regulation of APA have been studied. To date, many cis-acting regulatory elements and trans-acting factors for APA regulation have been identified. In this review, we summarize the recent advances in the functional consequences and regulation of APA and discuss the future directions, aiming to provide clues and references for future APA study.


Subject(s)
DNA Cleavage , Gene Expression Regulation , Polyadenylation , 3' Untranslated Regions , Animals , Plants , RNA Stability , Yeasts
12.
Front Microbiol ; 12: 815538, 2021.
Article in English | MEDLINE | ID: mdl-35250914

ABSTRACT

Growing evidence indicates that gut microbiota factors cannot be viewed as independent in the occurrence of obesity. Because the gut microbiome is highly dimensional and complex, studies on interactions between gut microbiome and host in obesity are still rare. To explore the relationship of gut microbiome-host interactions with obesity, we performed multi-omics associations of gut metagenome, intestinal transcriptome, and host obesity phenotypes in divergently selected obese-lean broiler lines. Metagenomic shotgun sequencing generated a total of 450 gigabases of clean data from 80 intestinal segment contents of 20 broilers (10 of each line). The microbiome comparison showed that microbial diversity and composition in the duodenum, jejunum, ileum, and ceca were altered variously between the lean- and fat-line broilers. We identified two jejunal microbes (Escherichia coli and Candidatus Acetothermia bacterium) and four cecal microbes (Alistipes sp. CHKCI003, Ruminococcaceae bacterium CPB6, Clostridiales bacterium, and Anaeromassilibacillus sp. An200), which were significantly different between the two lines (FDR < 0.05). When comparing functional metagenome, the fat-line broilers had an intensive microbial metabolism in the duodenum and jejunum but degenerative microbial activities in the ileum and ceca. mRNA-sequencing identified a total of 1,667 differentially expressed genes (DEG) in the four intestinal compartments between the two lines (| log2FC| > 1.5 and FDR < 0.05). Multi-omics associations showed that the 14 microbial species with abundances that were significantly related with abdominal fat relevant traits (AFRT) also have significant correlations with 155 AFRT-correlated DEG (p < 0.05). These DEG were mainly involved in lipid metabolism, immune system, transport and catabolism, and cell growth-related pathways. The present study constructed a gut microbial gene catalog of the obese-lean broiler lines. Intestinal transcriptome and metagenome comparison between the two lines identified candidate DEG and differential microbes for obesity, respectively. Multi-omics associations suggest that abdominal fat deposition may be influenced by the interactions of specific gut microbiota abundance and the expression of host genes in the intestinal compartments in which the microbes reside. Our study explored the interactions between gut microbiome and host intestinal gene expression in lean and obese broilers, which may expand knowledge on the relationships between obesity and gut microbiome.

13.
Dev Comp Immunol ; 116: 103927, 2021 03.
Article in English | MEDLINE | ID: mdl-33197480

ABSTRACT

Cathepsins belongs to the cysteine protease family, which are activated by an acidic environment. They play essential biological roles in the innate immunity and development of animals. Here, we identified a 62 kDa cathepsin L-like protease from the silkworm Bombyx mori. It contained putative conserved domains, including an I29 inhibitor domain and a peptidase C1A domain. The expression analysis revealed that cathepsin L-like was highly produced in the fat body, and 20-hydroxyecdysone (20 E) induced its expression. After challenge with three different types of heat-killed pathogens (Escherichia coli, Beauveria bassiana, and Bacillus cereus), the mRNA levels of cathepsin L-like significantly increased and displayed variable expression patterns in the immune tissues, suggesting its potential role in the innate immune response. The suppression of cathepsin L-like altered the expression of immune-related genes associated with the Toll and IMD pathway. Besides, autophagy-related genes such as Atg6, Atg8, VAMP2, Vps4, and syntaxin expression were also altered, indicating that cathepsin L-like regulates innate immunity and autophagy. Fluorescence microscopic analysis exhibited that cathepsin L-like was localized in the cytoplasm, and it was activated and dispersed throughout the cytoplasm and nucleus following the induction of anti-microbial autophagy. Altogether, our data suggest that cathepsin L-like may regulate the innate immune response and anti-microbial autophagy in the silkworm, B. mori.


Subject(s)
Autophagy/immunology , Bombyx/immunology , Cathepsin L/immunology , Immunity, Innate/immunology , Amino Acid Sequence , Animals , Autophagy/genetics , Bacteria/immunology , Cathepsin L/genetics , Cathepsin L/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Ecdysterone/immunology , Gene Expression/immunology , Immunity, Innate/genetics , Insect Proteins/genetics , Insect Proteins/immunology , Insect Proteins/metabolism , Lipopolysaccharides/immunology , Sequence Analysis , Signal Transduction/genetics , Signal Transduction/immunology
14.
Poult Sci ; 99(12): 6410-6421, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248556

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) has 2 protein isoforms (PPARγ1 and PPARγ2) generated by alternative promoter usage and alternative splicing. However, their functional uniqueness and similarity remain unclear. In the study, we investigated the effects of lentivirus-mediated overexpression of PPARγ1 and PPARγ2 on proliferation, apoptosis, and differentiation of the immortalized chicken preadipocytes. Cell Counting Kit-8 assay showed PPARγ1 and PPARγ2 overexpression markedly suppressed cell proliferation, and fluorescence activated cell sorting analysis showed that PPARγ1 and PPARγ2 overexpression caused cell cycle arrest at G0/G1 phase. Cell death detection ELISA analysis showed both PPARγ1 and PPARγ2 overexpression induced cell apoptosis. Oil red O staining and gene expression analysis showed both PPARγ1 and PPARγ2 overexpression promoted preadipocyte differentiation. In the presence of PPARγ ligand, rosiglitazone, PPARγ2 overexpression was more potent in inducing apoptosis, promoting adipogenesis, and suppressing cell proliferation than PPARγ1 overexpression. We further explored the molecular basis for their functional differences. Reporter gene assay showed that under ligand conditions, PPARγ2 overexpression resulted in 1.68-fold increase in transcription activity compared with PPARγ1. Electrophoretic mobility shift assay showed both PPARγ1 and PPARγ2 could bind to PPAR response element (PPRE) as heterodimer with retinoid X receptor alpha, and by comparison, PPARγ2 had a higher affinity for PPRE than PPARγ1. Reporter gene assay showed expression PPARγ1 and PPARγ2 similarly induced fatty acid synthase and adipocyte fatty acid-binding protein promoter activity but differentially induced lipoprotein lipase and perilipin 1 promoter activities. Coimmunoprecipitation analysis showed that PPARγ1 and PPARγ2 interacted similarly with the coactivators, Tat-interacting protein 60. Taken together, our results demonstrate that PPARγ1 and PPARγ2 differentially regulate preadipocyte proliferation, apoptosis, and differentiation as a result of their distinct and overlapping molecular functions.


Subject(s)
Apoptosis , Cell Differentiation , Chickens , PPAR gamma , Adipocytes/cytology , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Chickens/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Isoforms
15.
Front Genet ; 10: 525, 2019.
Article in English | MEDLINE | ID: mdl-31191623

ABSTRACT

The miR-17-92 cluster is involved in animal development and homeostasis, and its dysregulation leads to human diseases such as cancer. In the present study, we investigated the functional link between miR-17-92 cluster and Wnt/ß-catenin signaling pathway in ICP2 and DF1 cells. We demonstrated that ectopic expression of either LEF1 or ß-catenin increased the promoter activity of the miR-17-92 cluster host gene (MIR17HG) and combined ectopic expression of LEF1 and ß-catenin further enhanced the promoter activity; while knockdown of either LEF1 or ß-catenin reduced the MIR17HG promoter activity. Both LEF1 and ß-catenin could directly bind to the MIR17HG promoter. Furthermore, we demonstrated that low doses of lithium chloride (LiCl), an activator of Wnt/ß-catenin signaling pathway, increased MIR17HG promoter activity and the endogenous expression of the miR-17-92 cluster, while high doses of LiCl had the opposite effects. Treatment with XAV-939, an inactivator of the Wnt/ß-catenin pathway, reduced the endogenous expression of miR-17-92 cluster. Finally, we found that low doses of LiCl promoted the proliferation of ICP2 and DF1 cells, while high doses of LiCl inhibited the proliferation of ICP2 and DF1 cells. Taken together, our results reveal that MIR17HG is a target of LEF1 and the Wnt/ß-catenin pathway and suggest that the miR-17-92 cluster may, at least in part, mediate the proliferation-promoting effect of the Wnt/ß-catenin pathway in cell proliferation.

16.
Mikrochim Acta ; 186(7): 466, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31236752

ABSTRACT

A method is described for the determination of ascorbic acid (AA) in complex biological fluids. It based on maganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZnGe NPs) with appealing time-resolved phosphorescence (TRP). TRP can provide a background-free reporter signal in analytical methods. The absorption of AA overlaps the excitation band of Mn@ZnGe NPs at 254 nm. This reduces the intensity of fluorescence via an inner filter effect (IFE) with increasing concentration of AA. Typical experimental conditions include an emission peak at 536 nm, a delay time of 50 µs and a counting time of 2 ms. This method can detect AA in a range of 5-500 µM with a 0.13 µM limit of detection. If AA is oxidized by the enzyme AA oxidase (AAOx), dehydroascorbic acid will be formed which doesn't absorb at 254 nm. Hence, the IFE cannot occur and fluorescence is not reduced. The strategy can be used to quantify AAOx in the activity range of 1-4 U·mL-1. By using a handheld UV lamp and a smart phone with a color-scanning feature, the feasibility for visual detection and real-time/onsite quantitative scanometric monitoring of AA and AAOx is demonstrated. Graphical abstract Schematic presentation of a fluorometric method for determination of ascorbic acid (AA) and ascorbic oxidase and a scanometric visual assay. It based on the use of maganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZnGe NPs) with appealing time-resolved phosphorescence (TRP) and the inner-filter effect (IFE) between AA and Mn@ZnGe NPs.


Subject(s)
Ascorbate Oxidase/analysis , Ascorbic Acid/analysis , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Animals , Ascorbic Acid/blood , Ascorbic Acid/urine , Enzyme Assays/instrumentation , Enzyme Assays/methods , Germanium/chemistry , Limit of Detection , Male , Manganese/chemistry , Rats , Smartphone , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Zinc/chemistry
17.
Mitochondrial DNA B Resour ; 4(2): 2843-2844, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-33365754

ABSTRACT

Ophiopogon japonicus, extensively distributed in East Asia, is widely used in landscaping, the tuber of which also play a vital role in Oriental Medicine. Here, we reported the complete chloroplast genome which exhibited a typical quadripartite structure, 156,679 bp in length with 37.7% overall GC content, including 131 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes, and one pseudogene. Phylogenetic analysis suggested that O. japonicus has a close relationship to Liriope spicata.

18.
Talanta ; 191: 235-240, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30262056

ABSTRACT

Tb3+-doped carbon dots (Tb3+@CDs) were prepared in a facile hydrothermal method by using ammonium citrate as carbon source and Tb3+ as dopant. A 15-bp GT-rich single-strand DNA (ssDNA) was introduced to sensitize Tb3+ via the antenna effect for generating two fluorescence signals (CDs and Tb3+), forming a conjugate of Tb3+@CDs/ssDNA. The ratiometric fluorescence of Tb3+@CDs/ssDNA could be reversibly regulated by Ag+ and Cys, in which the fluorescence peak at 546 nm of Tb3+ could be switched to "On" or "Off" as the signal indicator while the fluorescence peak at 444 nm of CDs remained constant as the build-in reference. The proposed Ag+/Cys-mediated reversible fluorescence changes in Tb3+@CDs/ssDNA was also proven for the design of a self-calibrating ratiometric fluorescence logic system. By integrated with the specific reaction between H2O2 and Cys, Tb3+@CDs/ssDNA was applied for ratiometric fluorescence detection of H2O2. More importantly, the sensing strategy could be further successfully extended to the monitoring of H2O2-produced oxidase-related reactions, such as GOx-biocatalyzed oxidation of glucose (the limit of detection: 0.06 µM) and was well applied in rat serum compared to commercial kits. This work unveiled a novel ratiometric fluorescent design, which is cost-effective, simple to prepare and easy-to-use without chemical modification or fluorescence labeling.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , DNA, Single-Stranded/chemistry , Nanoparticles/chemistry , Oxidoreductases/metabolism , Terbium/chemistry , Animals , Base Sequence , Biocatalysis , Blood Glucose/analysis , Calibration , Cysteine/chemistry , Cystine/chemistry , DNA, Single-Stranded/genetics , Hydrogen Peroxide/chemistry , Male , Models, Molecular , Molecular Conformation , Rats
19.
Chem Pharm Bull (Tokyo) ; 66(6): 602-607, 2018.
Article in English | MEDLINE | ID: mdl-29863061

ABSTRACT

Dolastatin 16 is a cyclic depsipeptide isolated from the marine invertebrates and cyanobacterium Lyngbya majuscula, however, its bioactivity has been a historical question. In this study, peptidyl-prolyl cis-trans isomerase FKBP1A (FKBP12) was predicted as a potential target of dolastatin 16 via PharmMapper as well as verified using chemical-protein interactome (CPI) and molecular docking. FKBP1A has been previously identified as a target for the natural polyketide FK506 (tacrolimus), an immune suppressor inhibiting the rejection of organ transplantation in clinical use. The comparison study via the reverse pharmacophore screening and molecular docking of dolastatin 16 and FK506 indicated the good consistency of analysis with the computational approach. As the results, the lowest binding energy of dolastatin 16-FKBP1A complex was -7.4 kcal/mol and FK506-FKBP1A complex was -8.7 kcal/mol. The ligand dolastatin 16 formed three hydrogen bonds vs. four of FK506, as well as seven hydrophobic interactions vs. six of FK506 within the active site residues. These functional residues are highly repetitive and consistent with previously reported active site of model of FK506-FKBP1A complex, and the pharmacophore model was shown feasibly matching with the molecular feature of dolastatin 16.


Subject(s)
Depsipeptides/pharmacology , Molecular Docking Simulation , Tacrolimus Binding Proteins/antagonists & inhibitors , Depsipeptides/chemistry , Drug Evaluation, Preclinical , Humans , Models, Molecular , Molecular Conformation , Tacrolimus/chemistry , Tacrolimus/pharmacology
20.
Front Physiol ; 9: 1823, 2018.
Article in English | MEDLINE | ID: mdl-30618832

ABSTRACT

Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis, and alterations in its function are associated with various pathological processes related to metabolic syndrome. Recently, we found that the chicken PPARγ gene is regulated by three alternative promoters (P1, P2 and P3), producing five different transcript isoforms and two protein isoforms. In this study, the P1 promoter structure was characterized. Bioinformatics identified six putative nuclear respiratory factor 1 (NRF1) binding sites in the P1 promoter, and a reporter assay showed that NRF1 inhibited the activity of the P1 promoter. Of the six putative NRF1 binding sites, individual mutations of three of them abolished the inhibitory effect of NRF1 on P1 promoter activity. Furthermore, a ChIP assay indicated that NRF1 directly bound to the P1 promoter, and real-time quantitative RT-PCR analysis showed that NRF1 mRNA expression was negatively correlated with PPARγ1 expression (Pearson's r = -0.148, p = 0.033). Further study showed that NRF1 overexpression inhibited the differentiation of the immortalized chicken preadipocyte cell line (ICP1), which was accompanied by reduced PPARγ1 mRNA expression. Taken together, our findings indicated that NRF1 directly negatively regulates the P1 promoter of the chicken PPARγ gene and inhibits adipogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL