Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Nanoscale ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101249

ABSTRACT

We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2 electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.7 V to -0.9 V. The fractal structures have a domain size of ∼3 nm, showing enhanced mass transfer kinetics of CO2 approaching the catalyst surfaces without limiting ion diffusion. The phase-separated hydrophilic and hydrophobic domains offer separated channeling to water and CO2, as confirmed by attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and molecule dynamic (MD) simulations. H2O molecules permeate extensively into the polymer layer that adsorbs on zwitterions, forming continuous chains, while CO2 molecules strongly associate with the fluorinated tails of fluorinated polyzwitterions, with oxygen facing the positively charged amine groups. Overall, this coupling of zwitterion and fluorocarbon in a polymer material creates new opportunities for defining microenvironments of metallic nanocatalysts in hybrid structures.

2.
Article in English | MEDLINE | ID: mdl-39105797

ABSTRACT

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant health challenges and economic burdens worldwide. Recent studies have emphasized the potential therapeutic value of activating silent information regulator-1 (SIRT1) in treating these conditions. Resveratrol, a compound known for its ability to potently activate SIRT1, has demonstrated promising neuroprotective effects by targeting the underlying mechanisms of neurodegeneration. In this review, we delve into the crucial role of resveratrol-mediated SIRT1 upregulation in improving neurodegenerative diseases. The role of the activation of SIRT1 by resveratrol was reviewed. Moreover, network pharmacology was used to elucidate the possible mechanisms of resveratrol in these diseases. Activation of SIRT1 by resveratrol had positive effects on neuronal function and survival and alleviated the hallmark features of these diseases, such as protein aggregation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. In terms of network pharmacology, the signaling pathways by which resveratrol protects against different neurodegenerative diseases were slightly different. Although the precise mechanisms underlying the neuroprotective effects of resveratrol and SIRT1 activation remain under investigation, these findings offer valuable insights into potential therapeutic strategies for neurodegenerative diseases.

3.
Genes Dev ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137945

ABSTRACT

Tumor suppressor genes play critical roles in normal tissue homeostasis, and their dysregulation underlies human diseases including cancer. Besides human genetics, model organisms such as Drosophila have been instrumental in discovering tumor suppressor pathways that were subsequently shown to be highly relevant in human cancer. Here we show that hyperplastic disc (Hyd), one of the first tumor suppressors isolated genetically in Drosophila and encoding an E3 ubiquitin ligase with hitherto unknown substrates, and Lines (Lin), best known for its role in embryonic segmentation, define an obligatory tumor suppressor protein complex (Hyd-Lin) that targets the zinc finger-containing oncoprotein Bowl for ubiquitin-mediated degradation, with Lin functioning as a substrate adaptor to recruit Bowl to Hyd for ubiquitination. Interestingly, the activity of the Hyd-Lin complex is directly inhibited by a micropeptide encoded by another zinc finger gene, drumstick (drm), which functions as a pseudosubstrate by displacing Bowl from the Hyd-Lin complex, thus stabilizing Bowl. We further identify the epigenetic regulator Polycomb repressive complex1 (PRC1) as a critical upstream regulator of the Hyd-Lin-Bowl pathway by directly repressing the transcription of the micropeptide drm Consistent with these molecular studies, we show that genetic inactivation of Hyd, Lin, or PRC1 resulted in Bowl-dependent hyperplastic tissue overgrowth in vivo. We also provide evidence that the mammalian homologs of Hyd (UBR5, known to be recurrently dysregulated in various human cancers), Lin (LINS1), and Bowl (OSR1/2) constitute an analogous protein degradation pathway in human cells, and that OSR2 promotes prostate cancer tumorigenesis. Altogether, these findings define a previously unrecognized tumor suppressor pathway that links epigenetic program to regulated protein degradation in tissue growth control and tumorigenesis.

4.
Cancer Gene Ther ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075137

ABSTRACT

Metastasis, the primary cause of death in lung cancer patients, is facilitated by cytoskeleton remodeling, which plays a crucial role in cancer cell migration and invasion. However, the precise regulatory mechanisms of intracellular trafficking proteins involved in cytoskeleton remodeling remain unclear. In this study, we have identified Rabenosyn-5 (Rbsn) as an inhibitor of filopodia formation and lung cancer metastasis. Mechanistically, Rbsn interacts with CDC42 and functions as a GTPase activating protein (GAP), thereby inhibiting CDC42 activity and subsequent filopodia formation. Furthermore, we have discovered that Akt phosphorylates Rbsn at the Thr253 site, and this phosphorylation negates the inhibitory effect of Rbsn on CDC42 activity. Additionally, our analysis reveals that Rbsn expression is significantly downregulated in lung cancer, and this decrease is associated with a worse prognosis. These findings provide strong evidence supporting the role of Rbsn in suppressing lung cancer progression through the inhibition of metastasis.

6.
Cancer Discov ; 14(8): 1496-1521, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38591846

ABSTRACT

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming that allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified zinc finger protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a ten-eleven translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR-targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Significance: This study reveals a bifurcated role of ZNF397, and a TET2-driven epigenetic mechanism regulating tumor lineage plasticity and therapy response in prostate cancer, enhances the understanding of drug resistance, and unveils a new therapeutic strategy for overcoming androgen receptor-targeted therapy resistance.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Drug Resistance, Neoplasm , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , DNA-Binding Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Mice , Animals , Cell Line, Tumor , Epigenesis, Genetic , Cell Lineage
7.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328235

ABSTRACT

Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.

8.
Front Plant Sci ; 15: 1347842, 2024.
Article in English | MEDLINE | ID: mdl-38328701

ABSTRACT

FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.

9.
Langmuir ; 40(3): 1688-1697, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38186288

ABSTRACT

We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Scattering, Small Angle , X-Ray Diffraction , Phosphatidylcholines/chemistry , Molecular Structure , Microscopy, Electron, Transmission , Lipid Bilayers/chemistry
10.
ACS Appl Mater Interfaces ; 16(5): 6674-6686, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38289014

ABSTRACT

Peptide-based hydrogels have great potential for applications in tissue engineering, drug delivery, and so on. We systematically synthesize, characterize, and investigate the self-assembly behaviors of a series of polypeptide-based penta-block copolymers by varying block sequences and lengths. The copolymers contain hydrophobic blocks of poly(γ-benzyl-l-glutamate) (PBG, Bx) and two kinds of hydrophilic blocks, poly(l-lysine) (PLL, Ky) and poly(ethylene glycol) (PEG, EG34), where x and y are the number of repeating units of each block, where PBG and PLL blocks have unique functions for nerve regeneration and cell adhesion. It shows that a sufficient length of the middle hydrophilic segment capped with hydrophobic end PBG blocks is required. They first self-assemble into flower-like micelles and sequentially form transparent hydrogels (as low as 2.3 wt %) with increased polymer concentration. The hydrogels contain a microscale porous structure, a desired property for tissue engineering to facilitate the access of nutrient flow for cell growth and drug delivery systems with high efficiency of drug storage. We hypothesize that the structure of Bx-Ky-EG34-Ky-Bx agglomerates is beyond micron size (transparent), while that of Ky-Bx-EG34-Bx-Ky is on the submicron scale (opaque). We establish a working strategy to synthesize a polypeptide-based block copolymer with a wide window of sol-gel transition. The study offers insight into rational polypeptide hydrogel design with specific morphology, exploring the novel materials as potential candidates for neural tissue engineering.


Subject(s)
Pentaerythritol Tetranitrate , Rubiaceae , Hydrogels/chemistry , Polymers/chemistry , Polyethylene Glycols/chemistry , Peptides/chemistry , Micelles
11.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37781617

ABSTRACT

Cell-cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently, through the introduction of spatially resolved transcriptomics technologies (SRTs), especially those that achieve single cell resolution. However, significant challenges remain to analyze such highly complex data properly. Here, we introduce a Bayesian multi-instance learning framework, spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight spacia's power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand-receptor relationships and prior interaction databases, high false positive rates, and most importantly the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of spacia for all three commercialized single cell resolution ST technologies: MERSCOPE/Vizgen, CosMx/Nanostring, and Xenium/10X. Spacia unveiled how endothelial cells, fibroblasts and B cells in the tumor microenvironment contribute to Epithelial-Mesenchymal Transition and lineage plasticity in prostate cancer cells. We deployed spacia in a set of pan-cancer datasets and showed that B cells also participate in PDL1/PD1 signaling in tumors. We demonstrated that a CD8+ T cell/PDL1 effectiveness signature derived from spacia analyses is associated with patient survival and response to immune checkpoint inhibitor treatments in 3,354 patients. We revealed differential spatial interaction patterns between γδ T cells and liver hepatocytes in healthy and cancerous contexts. Overall, spacia represents a notable step in advancing quantitative theories of cellular communications.

12.
Nanoscale ; 16(2): 708-718, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38086657

ABSTRACT

We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH-responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multidentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an opposite response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-concentration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling.

13.
Oncogene ; 43(4): 265-280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030789

ABSTRACT

Prostate cancer (PCa) is primarily driven by aberrant Androgen Receptor (AR) signaling. Although there has been substantial advancement in antiandrogen therapies, resistance to these treatments remains a significant obstacle, often marked by continuous or enhanced AR signaling in resistant tumors. While the dysregulation of the ubiquitination-based protein degradation process is instrumental in the accumulation of oncogenic proteins, including AR, the molecular mechanism of ubiquitination-driven AR degradation remains largely undefined. We identified UBE2J1 as the critical E2 ubiquitin-conjugating enzyme responsible for guiding AR ubiquitination and eventual degradation. The absence of UBE2J1, found in 5-15% of PCa patients, results in disrupted AR ubiquitination and degradation. This disruption leads to an accumulation of AR proteins, promoting resistance to antiandrogen treatments. By employing a ubiquitination-based AR degrader to adeptly restore AR ubiquitination, we reestablished AR degradation and inhibited the proliferation of antiandrogen-resistant PCa tumors. These findings underscore the fundamental role of UBE2J1 in AR degradation and illuminate an uncharted mechanism through which PCa maintains heightened AR protein levels, fostering resistance to antiandrogen therapies.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Proteolysis , Receptors, Androgen , Ubiquitin-Conjugating Enzymes , Humans , Male , Androgen Antagonists/pharmacology , Androgens , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
14.
Nanoscale Adv ; 6(1): 146-154, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125594

ABSTRACT

Stimuli-responsive microgels, composed of small beads with soft, deformable polymer networks swollen through a combination of synthetic control over the polymer and its interaction with water, form a versatile platform for development of multifunctional and biocompatible sensors. The interfacial structural variation of such materials at a nanometer length scale is essential to their function, but not yet fully comprehended. Here, we take advantage of the plasmonic response of a gold nanorod embedded in a thermoresponsive microgel (AuNR@PNIPMAm) to monitor structural changes in the hydrogel directly near the nanorod surface. By direct comparison of the plasmon response against measurements of the hydrogel structure from dynamic light scattering and nuclear magnetic resonance, we find that the microgel shell of batch-polymerized AuNR@PNIPMAm exhibits a heterogeneous volume phase transition reflected by different onset temperatures for changes in the hydrodyanmic radius (RH) and plasmon resonance, respectively. The new approach of contrasting plasmonic response (a measure of local surface hydrogel structure) with RH and relaxation times paves a new path to gain valuable insight for the design of plasmonic sensors based on stimuli-responsive hydrogels.

15.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961351

ABSTRACT

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance: This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.

16.
Biol Trace Elem Res ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985568

ABSTRACT

Aluminum is a common environmental neurotoxin. Aluminum ions can cross the blood-brain barrier and accumulate in different brain regions, damage brain tissue, and cause cognitive impairment, but the molecular mechanism of aluminum neurotoxicity is not precise. This study investigated the effects of miR-204-5p, target gene EphB2, and downstream signaling pathway NMDAR-ERK-CREB-Arc on cognitive dysfunction induced by aluminum exposure. The results showed that the learning and memory of the rats were impaired in behavior. The accumulation of aluminum in the hippocampus resulted in the damage of nerve cell morphology in the CA1 region of the hippocampus. The expression level of miR-204-5p was increased, and the mRNA and protein expressions of EphB2, NMDAR2B, ERK1/2, CREB, and Arc were decreased. The results indicated that the mechanism of impaired learning and memory induced by aluminum exposure might promote the expression of miR-204-5P and further inhibit the expression of the target gene EphB2 and its downstream signaling pathway NMDAR-ERK-CREB-Arc.

17.
Biophys Chem ; 302: 107094, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659154

ABSTRACT

Bicellar systems have become popularized as their rich morphology can be applied in biochemistry, physical chemistry, and drug delivery technology. To the biochemical field, bicelles are powerful model membranes for the study of transmembrane protein behavior, membrane transport, and environmental interactions with the cell. Their morphological responses to environmental changes reveal a profound fundamental understanding of physical chemistry related to the principle of self-assembly. Recently, they have also drawn significant attention as theranostic nanocarriers in biopharmaceutical and diagnostic research due to their superior cellular uptake compared to liposomes. It is evident that applications are becoming broader, demanding to understand how the bicelle will form and behave in various environments. To consolidate current works on the bicelle's modern applications, this review will discuss various effects of composition and environmental conditions on the morphology, phase behavior, and stability. Furthermore, various applications such as payload entrapment and polymerization templating are presented to demonstrate their versatility and chemical nature.

18.
World J Clin Cases ; 11(23): 5580-5588, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37637698

ABSTRACT

BACKGROUND: Clinically amyopathic deramatomyositis was manifested as the various cutaneous dermatomyositis (DM) manifestations without muscle weakness. Anti-melanoma differentiation-associated gene 5 (anti-MDA5) and anti-Ro52 antibody-dual positive clinically amyopathic DM patients are at a high risk of developing rapidly progressive interstitial lung disease, and they exhibit an immensely high half-year mortality. CASE SUMMARY: We presented three patients with anti-MDA5 and anti-Ro52 antibody-dual positive DM patients and we reviewed the previous studies on the link between anti-MDA5 and anti-Ro52 antibody-dual positive DM. Although we aggressively treated these patients similarly, but they all exhibited different prognoses. We reviewed the importance of clinical cutaneous rashes as well as the pathogenesis and treatment in the dual positive anti-MDA5 and anti-Ro52 associated DM. CONCLUSION: Patients with anti-MDA5 anti-Ro52 antibody-dual positive DM should be accurately diagnosed at an early stage and should be treated aggressively, thus, the patient's prognosis can be significantly modified.

19.
ACS Macro Lett ; 12(7): 993-998, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37406157

ABSTRACT

We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy.

20.
Cancer Cell ; 41(8): 1427-1449.e12, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37478850

ABSTRACT

Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.


Subject(s)
Prostatic Neoplasms , Male , Humans , Mutagenesis , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Chromosomal Proteins, Non-Histone , Heterogeneous-Nuclear Ribonucleoproteins , Cytidine Deaminase , Minor Histocompatibility Antigens , Polycomb Repressive Complex 1
SELECTION OF CITATIONS
SEARCH DETAIL