Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307858

ABSTRACT

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Reproduction , Biological Evolution , Hybridization, Genetic
2.
Mol Plant ; 16(10): 1612-1634, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37740489

ABSTRACT

Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.


Subject(s)
Arabidopsis , Heat-Shock Response , Heat-Shock Response/genetics , Plants , Hot Temperature , Temperature , Arabidopsis/metabolism
3.
Science ; 376(6599): 1293-1300, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35709289

ABSTRACT

How the plasma membrane senses external heat-stress signals to communicate with chloroplasts to orchestrate thermotolerance remains elusive. We identified a quantitative trait locus, Thermo-tolerance 3 (TT3), consisting of two genes, TT3.1 and TT3.2, that interact together to enhance rice thermotolerance and reduce grain-yield losses caused by heat stress. Upon heat stress, plasma membrane-localized E3 ligase TT3.1 translocates to the endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation, implying that TT3.1 might serve as a potential thermosensor. Lesser accumulated, mature TT3.2 proteins in chloroplasts are essential for protecting thylakoids from heat stress. Our findings not only reveal a TT3.1-TT3.2 genetic module at one locus that transduces heat signals from plasma membrane to chloroplasts but also provide the strategy for breeding highly thermotolerant crops.


Subject(s)
Chloroplasts , Oryza , Plant Proteins , Quantitative Trait Loci , Thermotolerance , Chloroplasts/genetics , Chloroplasts/physiology , Genes, Plant , Oryza/genetics , Oryza/physiology , Plant Breeding/methods , Plant Proteins/genetics , Thermotolerance/genetics
4.
Nat Plants ; 8(1): 53-67, 2022 01.
Article in English | MEDLINE | ID: mdl-34992240

ABSTRACT

Global warming threatens crop production. G proteins mediate plant responses to multiple abiotic stresses. Here we identified a natural quantitative trait locus, TT2 (THEROMOTOLERANCE 2), encoding a Gγ subunit, that confers thermotolerance in rice during both vegetative and reproductive growth without a yield penalty. A natural allele with loss of TT2 function was associated with greater retention of wax at high temperatures and increased thermotolerance. Mechanistically, we found that a transcription factor, SCT1 (Sensing Ca2+ Transcription factor 1), functions to decode Ca2+ through Ca2+-enhanced interaction with calmodulin and acts as a negative regulator of its target genes (for example, Wax Synthesis Regulatory 2 (OsWR2)). The calmodulin-SCT1 interaction was attenuated by reduced heat-triggered Ca2+ caused by disrupted TT2, thus explaining the observed heat-induced changes in wax content. Beyond establishing a bridge linking G protein, Ca2+ sensing and wax metabolism, our study illustrates innovative approaches for developing potentially yield-penalty-free thermotolerant crop varieties.


Subject(s)
Oryza , Thermotolerance , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci , Stress, Physiological
5.
Commun Biol ; 4(1): 1171, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620988

ABSTRACT

Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.


Subject(s)
Edible Grain/growth & development , Flavonoids/metabolism , Lignin/metabolism , Organic Cation Transport Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Metabolic Flux Analysis , Organic Cation Transport Proteins/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL