Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 9(3): 379-86, 2014 May.
Article in English | MEDLINE | ID: mdl-24327236

ABSTRACT

PURPOSE: Several cell detection approaches which deal with bright-field microscope images utilize defocusing to increase image contrast. The latter is related to the physical light phase through the transport of intensity equation (TIE). Recently, it was shown that it is possible to approximate the solution of the TIE using a low-pass monogenic signal framework. The purpose of this paper is to show that using the local phase of the aforementioned monogenic signal instead of the defocused image improves the cell/background classification accuracy. MATERIALS AND METHODS: The paper statement was tested on an image database composed of three cell lines: adherent CHO, adherent L929, and Sf21 in suspension. Local phase and local energy images were generated using the low-pass monogenic signal framework with axial derivative images as input. Machine learning was then employed to investigate the discriminative power of the local phase. Three classifier models were utilized: random forest (RF), support vector machine (SVM) with a linear kernel, and SVM with a radial basis function (RBF) kernel. RESULTS: The improvement, averaged over cell lines, of classifying 5×5 sized patches extracted from the local phase image instead of the defocused image was 7.3% using the RF, 11.6% using the linear SVM, and 10.2% when a RBF kernel was employed instead of the linear one. Furthermore, the feature images can be sorted by increasing discriminative power as follows: at-focus signal, local energy, defocused signal, local phase. The only exception to this order was the superiority of local energy over defocused signal for suspended cells. CONCLUSIONS: Local phase computed using the low-pass monogenic signal framework considerably outperforms the defocused image for the purpose of pixel-patch cell/background classification in bright-field microscopy.


Subject(s)
Algorithms , Support Vector Machine , Cell Line/classification , Humans , Software
2.
IEEE Trans Med Imaging ; 32(12): 2274-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24001988

ABSTRACT

We present a novel machine learning-based system for unstained cell detection in bright-field microscope images. The system is fully automatic since it requires no manual parameter tuning. It is also highly invariant with respect to illumination conditions and to the size and orientation of cells. Images from two adherent cell lines and one suspension cell line were used in the evaluation for a total number of more than 3500 cells. Besides real images, simulated images were also used in the evaluation. The detection error was between approximately zero and 15.5% which is a significantly superior performance compared to baseline approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...