ABSTRACT
Aging is characterized by increased reactive species, leading to redox imbalance, oxidative damage, and senescence. The adverse effects of alcohol consumption potentiate aging-associated alterations, promoting several diseases, including liver diseases. Nucleoredoxin (NXN) is a redox-sensitive enzyme that targets reactive oxygen species and regulates key cellular processes through redox protein-protein interactions. Here, we determine the effect of chronic alcohol consumption on NXN-dependent redox interactions in the liver of aged mice. We found that chronic alcohol consumption preferentially promotes the localization of NXN either into or alongside senescent cells, declines its interacting capability, and worsens the altered interaction ratio of NXN with FLII, MYD88, CAMK2A, and PFK1 proteins induced by aging. In addition, carbonylated protein and cell proliferation increased, and the ratios of collagen I and collagen III were inverted. Thus, we demonstrate an emerging phenomenon associated with altered redox homeostasis during aging, as shown by the declining capability of NXN to interact with partner proteins, which is enhanced by chronic alcohol consumption in the mouse liver. This evidence opens an attractive window to elucidate the consequences of both aging and chronic alcohol consumption on the downstream signaling pathways regulated by NXN-dependent redox-sensitive interactions.
ABSTRACT
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , Lung/cytology , SARS-CoV-2/immunology , B-Lymphocytes/immunology , Biomarkers , Bronchoalveolar Lavage Fluid/chemistry , Dendritic Cells/immunology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Killer Cells, Natural/immunology , Lung/chemistry , Machine Learning , Macrophages/immunology , Monocytes/immunology , Neutrophils/immunology , RNA, Viral/genetics , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis , T-Lymphocytes/immunologyABSTRACT
Heterogeneity is an intrinsic characteristic of cancer. Even in isogenic tumors, cell populations exhibit differential cellular programs that overall supply malignancy and decrease treatment efficiency. In this study, we investigated the functional relationship among cell subtypes and how this interdependency can promote tumor development in a cancer cell line. To do so, we performed single-cell RNA-seq of MCF7 Multicellular Tumor Spheroids as a tumor model. Analysis of single-cell transcriptomes at two-time points of the spheroid growth, allowed us to dissect their functional relationship. As a result, three major robust cellular clusters, with a non-redundant complementary composition, were found. Meanwhile, one cluster promotes proliferation, others mainly activate mechanisms to invade other tissues and serve as a reservoir population conserved over time. Our results provide evidence to see cancer as a systemic unit that has cell populations with task stratification with the ultimate goal of preserving the hallmarks in tumors.
Subject(s)
Breast Neoplasms/genetics , Exome Sequencing/methods , Single-Cell Analysis/methods , Spheroids, Cellular/cytology , Female , Gene Regulatory Networks , Genetic Heterogeneity , Humans , MCF-7 Cells , Sequence Analysis, RNA , Tumor Cells, CulturedABSTRACT
During tumor progression, cancer cells rewire their metabolism to face their bioenergetic demands. In recent years, microRNAs (miRNAs) have emerged as regulatory elements that inhibit the translation and stability of crucial mRNAs, some of them causing direct metabolic alterations in cancer. In this study, we investigated the relationship between miRNAs and their targets mRNAs that control metabolism, and how this fine-tuned regulation is diversified depending on the tumor stage. To do so, we implemented a paired analysis of RNA-seq and small RNA-seq in a breast cancer cell line (MCF7). The cell line was cultured in multicellular tumor spheroid (MCTS) and monoculture conditions. For MCTS, we selected two-time points during their development to recapitulate a proliferative and quiescent stage and contrast their miRNA and mRNA expression patterns associated with metabolism. As a result, we identified a set of new direct putative regulatory interactions between miRNAs and metabolic mRNAs representative for proliferative and quiescent stages. Notably, our study allows us to suggest that miR-3143 regulates the carbon metabolism by targeting hexokinase-2. Also, we found that the overexpression of several miRNAs could directly overturn the expression of mRNAs that control glycerophospholipid and N-Glycan metabolism. While this set of miRNAs downregulates their expression in the quiescent stage, the same set is upregulated in proliferative stages. This last finding suggests an additional metabolic switch of the above mentioned metabolic pathways between the quiescent and proliferative stages. Our results contribute to a better understanding of how miRNAs modulate the metabolic landscape in breast cancer MCTS, which eventually will help to design new strategies to mitigate cancer phenotype.