Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Childs Nerv Syst ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060746

ABSTRACT

PURPOSE: To assess responsive neurostimulation (RNS) efficacy in pediatric patients with drug-resistant epilepsy, comparing response (≥ 50% reduction in seizure frequency) rates between patients with two or fewer seizure foci and those with multifocal or generalized epilepsy. This study seeks to address the gap in knowledge regarding RNS effectiveness in pediatric populations. METHODS: A systematic review and meta-analysis included data from PubMed, Embase, and Web of Science through November 2023, including 17 retrospective studies and a case series of 24 patients from our practice for a total of 105 aggregated patients. The inclusion criteria of patients were age ≤ 18 and diagnosis of DRE. Exclusion criteria were nonhuman subjects and cases where RNS was not utilized to treat DRE. Study inclusion criteria were detailing the use of RNS and comparing patients with ≤ 2 foci with other focalities. Study exclusion criteria were failure to specify RNS lead placement or type of epilepsy. The risk of bias was assessed using the ROBINS-I tool for all non-randomized studies. Effect sizes and variances were aggregated to provide a comprehensive measure of RNS efficacy, and heterogeneity among the studies was assessed using I2 statistics and Cochran's Q test to evaluate the consistency of the findings. Statistical analyses were conducted using IBM SPSS. We analyzed demographics, epilepsy history, treatment outcomes, and RNS details using descriptive and inferential statistics, including Wilcoxon-Mann-Whitney, Fisher's exact, and chi-squared tests. This systematic review was not registered. RESULTS: Seventeen retrospective studies and a single-institution case series, encompassing 105 pediatric patients, were analyzed. Effect sizes and confidence intervals were calculated to quantify treatment effects. Analyses revealed that RNS reduces seizure frequency across a spectrum of pediatric epilepsy syndromes, irrespective of the seizures' focal, multifocal, or generalized origins. The effectiveness of RNS was not influenced by the patient's sex, age at epilepsy onset, or presence of neurological and psychiatric comorbidities. Prior vagus nerve stimulation surgery and the presence of an epileptic syndrome were factors associated with a lower likelihood of near-complete seizure remission with RNS, underscoring the complexities of treating patients with generalized epilepsies or previous interventional failures. The necessity of further research into individualized surgical strategies for patients was underscored by the mixed results of comparisons of electrode characteristics with responder rates. Limitations of our study include its reliance on retrospective studies, which introduces potential bias and limits the ability to infer causality. DISCUSSION: RNS is a safe and effective treatment in pediatric patients with DRE across demographic, comorbidity, and focality variability. FDA age and focality restrictions, along with patient and physician hesitancy, may be limiting the potential for effective treatment of pediatric DRE with RNS. Prospective randomized trials are recommended to validate these findings.

2.
Curr Pharm Des ; 15(4): 380-8, 2009.
Article in English | MEDLINE | ID: mdl-19199965

ABSTRACT

Angiogenesis is tightly regulated by opposing mechanisms in mammalian cells and is controlled by the angiogenic switch. Other review articles have described a central role for the PTEN/PI-3 kinase/AKT signaling node in the coordinate control of cell division, tumor growth, apoptosis, invasion and cellular metabolism [1, 2]. In this review, we focus on literature that supports the PTEN/PI-3 kinase/AKT signaling node as a major control point for the angiogenic switch in both the on and off positions. We also discuss the rationale for designing small molecule drugs that target the PTEN/PI-3 kinase/AKT signaling node for therapeutic intervention. Our hypothesis is that, instead of inhibiting one cell surface receptor, such as VEGFR2 with bevacizumab (Avastin), thereby leaving a significant number of receptors free to pulse angiogenic signals, a more effective strategy may be to regulate signaling through an intercept node where redundant cell surface receptor signals converge to transmit important signaling events within the cell. This therapeutic configuration brings coordinate control over multiple cell surface receptors in concert with a physiologic response which may combine arrest of cell cycle progression with growth inhibition and the induction of genes involved in specialized functions such as movement, which are all required for the complex process of angiogenesis to occur in a temporal-spatial paradigm.


Subject(s)
Neovascularization, Pathologic , Neovascularization, Physiologic , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Animals , Humans , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL