Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
2.
Bone ; 162: 116453, 2022 09.
Article in English | MEDLINE | ID: mdl-35667602

ABSTRACT

Patients with Crohn's disease often have low bone mineral density and an increased risk of osteoporosis. Although decreased bone formation can be seen at diagnosis, the underlying pathophysiology of suboptimal bone accrual remains poorly understood. We sought to evaluate a novel mechanism affecting osteogenesis in patients with Crohn's disease. In this case series, we evaluated bone marrow composition at the distal femur and proximal tibia of the left knee measured via magnetic resonance (MR) spectroscopy and relaxometry in five adolescents with the diagnosis of Crohn's disease. The subjects were enrolled prospectively between 2011 and 2013 at Boston Children's Hospital. Additional clinical information, including DXA scans to evaluate bone mineral density and body composition, and Crohn's disease history, such as glucocorticoid use and disease duration, were assessed. Healthy adolescents have persistent hematopoietic marrow with only 40 to 50 % fat in the long bone metaphyses. The current participants with Crohn's disease had increased marrow adiposity, with a mean fat fraction of 67.8 %. There appeared to be a trend towards higher fat fraction with shorter disease duration, while participants with the longest disease duration had the lowest fat fraction. Participants also had decreased bone density, increased fat mass, and lower lean mass, as assessed by DXA and compared to pediatric reference data. Our MRI results demonstrate increased marrow adiposity in children with Crohn's disease, especially early in the course of the disease. DXA may better demonstrate longer-term effects on bone. Additional studies are needed to evaluate bone marrow composition in these patients and to elucidate further the inverse relationship between marrow adipocytes and osteogenesis, as well as the relationship between bone marrow adiposity and body composition.


Subject(s)
Adiposity , Crohn Disease , Absorptiometry, Photon , Adiposity/physiology , Adolescent , Bone Density/physiology , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Child , Crohn Disease/complications , Crohn Disease/pathology , Humans , Obesity/pathology
3.
Bone ; 162: 116454, 2022 09.
Article in English | MEDLINE | ID: mdl-35667601

ABSTRACT

PURPOSE: To determine bone mineral density (BMD) of transgender girls before pubertal blockade, and correlate with lifestyle and clinical variables. METHODS: Six transfemale peri-pubertal girls had knee magnetic resonance imaging (MRI) with T1-weighted images and single-voxel proton magnetic resonance spectroscopy (MRS). BMD measurements were obtained via dual-energy X-ray absorptiometry. Questionnaires about physical activity, diet, and the Eating Attitudes Test (EAT-26) were completed. The T2 relaxation rate of water (R2 = 1/T2 in s -1) was correlated with scores on surveys. RESULTS: Three participants (50 %) had a low bone mineral density for age based on total body less head Z-score less than -2; two participants (33 %) had a low BMD for age at lumbar spine. All had EAT-26 scores below threshold for clinical concern. All participants self-reported regular exercise. Bone marrow MR variables (T1, fat fraction, unsaturation index and R2 of water) were not correlated with DXA measures. CONCLUSIONS: Participants had low BMD on beginning pubertal blockade. Clinicians should consider monitoring BMD among youth AMAB, a group at potential risk for poor bone health.


Subject(s)
Bone Density , Transgender Persons , Absorptiometry, Photon , Adolescent , Bone Marrow/diagnostic imaging , Female , Humans , Lumbar Vertebrae , Water
4.
Magn Reson Imaging ; 90: 44-52, 2022 07.
Article in English | MEDLINE | ID: mdl-35398027

ABSTRACT

Understanding how and why MR signals and their associated relaxation rates vary with cortical depth could ultimately enable the noninvasive investigation of the laminar architecture of cerebral cortex in the living human brain. However, cortical gray matter is typically only a few millimeters thick, making it challenging to sample many cortical depths with the voxel sizes commonly used in MRI studies. Line-scan techniques provide a way to overcome this challenge and here we implemented a novel line-scan GESSE pulse sequence that allowed us to measure irreversible and reversible transverse relaxation rates-R2 and R2´, respectively-with extremely high resolution (250 µm) in the radial direction, perpendicular to the cortical surface. Eight healthy human subjects were scanned at 7 T using this sequence, with primary visual cortex (V1) targeted in three subjects and primary motor (M1) and somatosensory cortex (S1) targeted in the other five. In all three cortical areas, a peak in R2 values near the central depths was seen consistently across subjects-an observation that has not been made before, to our knowledge. On the other hand, no consistent pattern was apparent for R2´ values as a function of cortical depth. The intracortical R2 peak reported here is unlikely to be explained by myelin content or by deoxyhemoglobin in the microvasculature; however, this peak is in accord with the laminar distribution of non-heme iron in these cortical areas, known from prior histology studies. Obtaining information about tissue microstructure via measurements of transverse relaxation (and other quantitative MR contrast mechanisms) at the extremely high radial resolutions achievable through the use of line-scan techniques could therefore bring us closer to being able to perform "in vivo histology" of the cerebral cortex.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Brain , Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Myelin Sheath
5.
Magn Reson Med ; 85(6): 2965-2977, 2021 06.
Article in English | MEDLINE | ID: mdl-33404069

ABSTRACT

PURPOSE: To compare transverse relaxation rates of brain metabolites estimated from single-TE PRESS acquisitions with more conventionally derived rates estimated from multiple-TE PRESS acquisitions. METHODS: Single-voxel (8 mL) PRESS data within white matter from 6 subjects were acquired at five different TEs. Transverse relaxation rates R2 of N-acetylaspartate, creatine, and choline were estimated from a single TE using full versus right-side-only sampling of the echo. These R2 values were compared with R2Hahn values obtained from the multiple-TE PRESS acquisitions. RESULTS: Following baseline subtraction and RMS weighting, interindividual mean R2 values from TE = 288 ms magnitude spectra for choline, creatine, and N-acetylaspartate were highly correlated with respective R2Hahn values (r2 = 0.99). Paired individual measurements at this TE showed less correlation (r2 = 0.48), primarily due to the N-acetylaspartate resonance. Using TE = 360 ms data for N-acetylaspartate and 288 ms for choline and creatine resulted in an improved correlation coefficient (r2 = 0.80). The average absolute intra-individual differences in the estimated R2 s between single-TE and Hahn method was 9.6 ± 7.7%. CONCLUSION: For the major brain metabolite singlets, R2Hahn values showed correlations with more fragile measurements of R2 from a single TE that are worthy of interest. Because the left side of long-TE spin echoes is available "for free" from an acquisition perspective, and although the single-TE method for estimating R2 values is associated with lower precision, the reduction in scan time may be clinically helpful.


Subject(s)
Brain , Creatine , Aspartic Acid , Brain/diagnostic imaging , Choline , Humans , Magnetic Resonance Spectroscopy
6.
Magn Reson Med ; 85(1): 390-403, 2021 01.
Article in English | MEDLINE | ID: mdl-32738088

ABSTRACT

PURPOSE: The goal of this study was to measure diffusion signals within the cerebral cortex using the line-scan technique to achieve extremely high resolution in the radial direction (ie, perpendicular to the cortical surface) and to demonstrate the utility of these measurements for investigating laminar architecture in the living human brain. METHODS: Line-scan diffusion data with 250-500 micron radial resolution were acquired at 7 T on 8 healthy volunteers, with each line prescribed perpendicularly to primary somatosensory cortex (S1) and primary motor cortex (M1). Apparent diffusion coefficients, fractional anisotropy values, and radiality indices were measured as a function of cortical depth. RESULTS: In the deep layers of S1, we found evidence for high anisotropy and predominantly tangential diffusion, with low anisotropy observed in superficial S1. In M1, moderate anisotropy and predominantly radial diffusion was seen at almost all cortical depths. These patterns were consistent across subjects and were conspicuous without averaging data across different locations on the cortical sheet. CONCLUSION: Our results are in accord with the myeloarchitecture of S1 and M1, known from prior histology studies: in S1, dense bands of tangential myelinated fibers run through the deep layers but not the superficial ones, and in M1, radial myelinated fibers are prominent at most cortical depths. This work therefore provides support for the idea that high-resolution diffusion signals, measured with the line-scan technique and receiving a boost in SNR at 7 T, may serve as a sensitive probe of in vivo laminar architecture.


Subject(s)
Cerebral Cortex , Image Processing, Computer-Assisted , Anisotropy , Diffusion , Diffusion Magnetic Resonance Imaging , Humans
7.
IEEE Open J Eng Med Biol ; 1: 116-122, 2020.
Article in English | MEDLINE | ID: mdl-33294851

ABSTRACT

OBJECTIVE: Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are widely researched as contrast agents in clinical magnetic resonance imaging (MRI). SPIONs are frequently coated with anti-biofouling substances such as poly(ethylene glycol) (PEG) to prevent protein deposition and improve circulation time in vivo. However, few previous studies have comprehensively examined optimization of SPION MR properties with respect to physicochemical properties of the core SPION and the polymeric coating. The aim of this study is to determine effects of different methods of chemical attachment of a polymer, polymer chain length, and polymer coating density on the MR relaxivities of SPIONs, thereby contributing to a better understanding of the interaction of these parameters and the efficacy of the designed agent. RESULTS: These studies indicate that the chemical composition and, in particular, the hydrophobicity/hydrophilicity of the chemical group linking PEG chains to a SPION core may play a larger role in the resulting MR relaxivities than other variable properties such as SPION core size and PEG chain length. CONCLUSIONS: The method of SPION fabrication and chemical composition of the coating play a significant role in the MR relaxivities of the resulting particles. These results should be considered in the fabrication of particles for clinical purposes, particularly when optimization of the MR relaxivities is desired.

8.
NMR Biomed ; 33(6): e4290, 2020 06.
Article in English | MEDLINE | ID: mdl-32167612

ABSTRACT

The goal of this study was to test a new formalism for extracting reversible and irreversible transverse relaxation rates from resonances within typical proton muscle spectra using only a single spin echo as acquired with routine single-voxel, point-resolved echo spectroscopy (PRESS) acquisitions. Single-voxel, non-water-suppressed PRESS acquisitions within the calf muscles of four healthy subjects were performed at 1.5 T using six echo times ranging from 30 to 576 ms. Novel transverse relaxation analyses of water, choline, creatine, and lipid resonances were performed based upon the disparate relaxation sensitivities of the left versus the right sides of spectroscopically sampled spin echoes. Irreversible and reversible transverse relaxation rates R2 and R2 ' were extracted for water, metabolites, and lipids using echo times of 288 ms and longer. The R2 values so obtained were compared with more conventional "gold standard" Hahn values, R2Hahn , evaluated from the echo-time dependence of spectral peak areas generated from right-side sampling alone. Water resonances displayed biexponential Hahn signal decays, consistent with observations of decreasing R2 values with increasing echo time via the new approach. Choline and creatine resonances displayed monoexponential echo-time decays, with R2Hahn values in reasonable agreement with R2 values obtained from the single-echo analyses at the longer echo times. Lipid methylene and methyl R2 values extracted from the new approach were also in reasonable accord with R2Hahn values. Further validation of the technique was provided through PRESS acquisitions on a water phantom to which various levels of gadolinium were added in order to manipulate transverse relaxation rates, yielding excellent agreement between water-resonance R2Hahn and single-echo R2 values. In summary, this work demonstrates the feasibility of measuring reversible and irreversible transverse relaxation rates for individual spectral peaks from single-echo PRESS acquisitions, enabling a reduction in overall scan time relative to the use of multiple acquisitions with varying echo time.


Subject(s)
Magnetic Resonance Imaging , Muscles/diagnostic imaging , Spin Labels , Choline/metabolism , Creatine/metabolism , Female , Humans , Lipids/chemistry , Male , Middle Aged , Muscles/metabolism , Phantoms, Imaging , Time Factors , Water
9.
Acad Radiol ; 27(10): 1432-1439, 2020 10.
Article in English | MEDLINE | ID: mdl-31862185

ABSTRACT

RATIONALE AND OBJECTIVES: To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS: This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman's rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS: At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10-6 vs. 1277 ± 213 × 10-6 mm2/sec, p = 0.0005; Ktrans: 0.346 ± 0.16 vs. 0.144 ± 0.06 min-1, p = 0.002; AUC90: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI Ktrans (0.346 ± 0.16 to 0.188 ± 0.08 min-1; p = 0.02) and AUC90 (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION: Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.


Subject(s)
Neoadjuvant Therapy , Prostatic Neoplasms , Androgen Antagonists/therapeutic use , Biomarkers , Humans , Magnetic Resonance Imaging , Male , Multiparametric Magnetic Resonance Imaging , Pilot Projects , Prospective Studies , Prostatectomy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/therapy
10.
Top Magn Reson Imaging ; 28(5): 245-254, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31592991

ABSTRACT

Fetal magnetic resonance imaging (MRI) has been gaining increasing interest in both clinical radiology and research. Echoplanar imaging (EPI) offers a unique potential, as it can be used to acquire images very fast. It can be used to freeze motion, or to get multiple images with various contrast mechanisms that allow studying the microstructure and function of the fetal brain and body organs. In this article, we discuss the current clinical and research applications of fetal EPI. This includes T2*-weighted imaging to better identify blood products and vessels, using diffusion-weighted MRI to investigate connections of the developing brain and using functional MRI (fMRI) to identify the functional networks of the developing brain. EPI can also be used as an alternative structural sequence when banding or standing wave artifacts adversely affect the mainstream sequences used routinely in structural fetal MRI. We also discuss the challenges with EPI acquisitions, and potential solutions. As EPI acquisitions are inherently sensitive to susceptibility artifacts, geometric distortions limit the use of high-resolution EPI acquisitions. Also, interslice motion and transmit and receive field inhomogeneities may create significant artifacts in fetal EPI. We conclude by discussing promising research directions to overcome these challenges to improve the use of EPI in clinical and research applications.


Subject(s)
Echo-Planar Imaging/methods , Fetal Diseases/diagnostic imaging , Brain/diagnostic imaging , Brain/embryology , Diffusion Magnetic Resonance Imaging/methods , Humans , Lung/diagnostic imaging , Lung/embryology
11.
NMR Biomed ; 32(11): e4140, 2019 11.
Article in English | MEDLINE | ID: mdl-31322331

ABSTRACT

The goal of this study was to measure irreversible and reversible transverse relaxation rates in the globus pallidus and putamen at 7 T, and to use these rates to make inferences about the sub-voxel structure of iron and calcification deposits. Gradient Echo Sampling of a Spin Echo (GESSE) data were acquired at 7 T on eighteen volunteers spanning a large range of ages (23-85 years), with calcifications in the globus pallidus incidentally observed in one volunteer. Maps of transverse relaxation rates were derived from the GESSE data, and the mean value of these rates in globus pallidus and putamen was estimated for each volunteer. Both irreversible and reversible transverse relaxation rates increased with the expected age-dependent iron content in these structures, except for the individual with calcifications for whom extremely large reversible relaxation rates but normal irreversible relaxation rates were found in the globus pallidus. Given the sensitivity of irreversible and reversible transverse relaxation rates to microscopic and mesoscopic field variations, respectively, our findings suggest that joint consideration of these rates may yield information not only about the amount of iron and calcification deposited in the brain, but also about the sub-voxel structure of these deposits, perhaps revealing certain aspects of their geometry and cellular distribution.


Subject(s)
Basal Ganglia/diagnostic imaging , Calcification, Physiologic , Iron/metabolism , Magnetic Resonance Imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult
12.
Bone ; 110: 335-342, 2018 05.
Article in English | MEDLINE | ID: mdl-29496516

ABSTRACT

PURPOSE: Dehydroepiandrosterone (DHEA)+estrogen/progestin therapy for adolescent girls with anorexia nervosa (AN) has the potential to arrest bone loss. The primary aim of this study was to test the effects of DHEA+estrogen/progestin therapy in adolescent girls with AN on bone marrow in the distal femur using magnetic resonance imaging (MRI) and spectroscopy. METHODS: Seventy adolescent girls with AN were enrolled in a double blind, randomized, placebo-controlled trial at two urban hospital-based programs. INTERVENTION: Seventy-six girls were randomly assigned to receive 12months of either oral micronized DHEA or placebo. DHEA was administered with conjugated equine estrogens (0.3mg daily) for 3months, then an oral contraceptive (20µg ethinyl estradiol/ 0.1mg levonorgestrel) for 9months. The primary outcome measure was bone marrow fat by MRI and magnetic resonance spectroscopy (MRS). RESULTS: T2 of the water resonance dropped significantly less in the active vs. placebo group over 12months at both the medial and lateral distal femur (p=0.02). Body mass index (BMI) was a significant effect modifier for T1 and for T2 of unsaturated (T2unsat) and saturated fat (T2sat) in the lateral distal femur. Positive effects of the treatment of DHEA+estrogen/progestin were seen primarily for girls above a BMI of about 18kg/m2. CONCLUSIONS: These findings suggest treatment with oral DHEA+estrogen/progestin arrests the age- and disease-related changes in marrow fat composition in the lateral distal femur reported previously in this population.


Subject(s)
Anorexia Nervosa/drug therapy , Hormone Replacement Therapy/methods , Magnetic Resonance Imaging/methods , Administration, Oral , Adolescent , Dehydroepiandrosterone/therapeutic use , Double-Blind Method , Drug Combinations , Estrogens, Conjugated (USP)/therapeutic use , Ethinyl Estradiol/therapeutic use , Female , Humans , Levonorgestrel/therapeutic use
13.
Magn Reson Med ; 79(5): 2564-2575, 2018 05.
Article in English | MEDLINE | ID: mdl-28913930

ABSTRACT

PURPOSE: To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS: A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS: For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS: The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Phantoms, Imaging , Signal Processing, Computer-Assisted , Brain/diagnostic imaging , Breast/diagnostic imaging , Contrast Media/chemistry , Female , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Neoplasms/diagnostic imaging , Prostate/diagnostic imaging , Reproducibility of Results
14.
MAGMA ; 31(2): 321-340, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28884314

ABSTRACT

OBJECTIVE: Use of spectroscopically-acquired spin echoes typically involves Fourier transformation of the right side of the echo while largely neglecting the left side. For sufficiently long echo times, the left side may have enough spectral resolution to offer some utility. Since the acquisition of this side is "free", we deemed it worthy of attention and investigated the spectral properties and information content of this data. MATERIALS AND METHODS: Theoretical expressions for left- and right-side spectra were derived assuming Lorentzian frequency distributions. For left-side spectra, three regimes were identified based upon the relative magnitudes of reversible and irreversible transverse relaxation rates, R 2' and R 2, respectively. Point-resolved spectroscopy (PRESS) data from muscle, fat deposit and bone marrow were acquired at 1.5 T to test aspects of the theoretical expressions. RESULTS: For muscle water or methylene marrow resonances, left-side signals were substantially or moderately larger than right-side signals but were similar in magnitude for muscle choline and creatine resonances. Left- versus right-side spectral-peak amplitude ratios depend sensitively on the relative values of R 2 and R 2' , which can be estimated given this ratio and a right-side linewidth measurement. CONCLUSION: Left-side spectra can be used to augment signal-to-noise and to estimate spectral R 2 and R 2' values under some circumstances.


Subject(s)
Image Processing, Computer-Assisted/methods , Spectrophotometry , Adipose Tissue/diagnostic imaging , Aspartic Acid/metabolism , Bone Marrow/diagnostic imaging , Choline/metabolism , Creatine/metabolism , Fourier Analysis , Humans , Knee/diagnostic imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Models, Statistical , Muscles/diagnostic imaging , Normal Distribution , Protons , Signal-To-Noise Ratio
15.
Abdom Radiol (NY) ; 43(5): 1237-1244, 2018 05.
Article in English | MEDLINE | ID: mdl-28840280

ABSTRACT

PURPOSE: To compare diagnostic performance of PI-RADSv2 with ADC parameters to identify clinically significant prostate cancer (csPC) and to determine the impact of csPC definitions on diagnostic performance of ADC and PI-RADSv2. METHODS: We retrospectively identified treatment-naïve pathology-proven peripheral zone PC patients who underwent 3T prostate MRI, using high b-value diffusion-weighted imaging from 2011 to 2015. Using 3D slicer, areas of suspected tumor (T) and normal tissue (N) on ADC (b = 0, 1400) were outlined volumetrically. Mean ADCT, mean ADCN, ADCratio (ADCT/ADCN) were calculated. PI-RADSv2 was assigned. Three csPC definitions were used: (A) Gleason score (GS) ≥ 4 + 3; (B) GS ≥ 3 + 4; (C) MRI-based tumor volume >0.5 cc. Performances of ADC parameters and PI-RADSv2 in identifying csPC were measured using nonparametric comparison of receiver operating characteristic curves using the area under the curve (AUC). RESULTS: Eighty five cases met eligibility requirements. Diagnostic performances (AUC) in identifying csPC using three definitions were: (A) ADCT (0.83) was higher than PI-RADSv2 (0.65, p = 0.006); (B) ADCT (0.86) was higher than ADCratio (0.68, p < 0.001), and PI-RADSv2 (0.70, p = 0.04); (C) PI-RADSv2 (0.73) performed better than ADCratio (0.56, p = 0.02). ADCT performance was higher when csPC was defined by A or B versus C (p = 0.038 and p = 0.01, respectively). ADCratio performed better when csPC was defined by A versus C (p = 0.01). PI-RADSv2 performance was not affected by csPC definition. CONCLUSIONS: When csPC was defined by GS, ADC parameters provided better csPC discrimination than PI-RADSv2, with ADCT providing best result. When csPC was defined by MRI-calculated volume, PI-RADSv2 provided better discrimination than ADCratio. csPC definition did not affect PI-RADSv2 diagnostic performance.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Adult , Aged , Diagnosis, Differential , Humans , Male , Middle Aged , Prostate/diagnostic imaging , Retrospective Studies , Sensitivity and Specificity
16.
Magn Reson Med ; 79(4): 2346-2358, 2018 04.
Article in English | MEDLINE | ID: mdl-28718517

ABSTRACT

PURPOSE: To compare the fitting and tissue discrimination performance of biexponential, kurtosis, stretched exponential, and gamma distribution models for high b-factor diffusion-weighted images in prostate cancer. METHODS: Diffusion-weighted images with 15 b-factors ranging from b = 0 to 3500 s/mm2 were obtained in 62 prostate cancer patients. Pixel-wise signal decay fits for each model were evaluated with the Akaike Information Criterion (AIC). Parameter values for each model were determined within normal prostate and the index lesion. Their potential to differentiate normal from cancerous tissue was investigated through receiver operating characteristic analysis and comparison with Gleason score. RESULTS: The biexponential slow diffusion fraction fslow , the apparent kurtosis diffusion coefficient ADCK , and the excess kurtosis factor K differ significantly among normal peripheral zone (PZ), normal transition zone (TZ), tumor PZ, and tumor TZ. Biexponential and gamma distribution models result in the lowest AIC, indicating a superior fit. Maximum areas under the curve (AUCs) of all models ranged from 0.93 to 0.96 for the PZ and from 0.95 to 0.97 for the TZ. Similar AUCs also result from the apparent diffusion coefficient (ADC) of a monoexponential fit to a b-factor sub-range up to 1250 s/mm2 . For kurtosis and stretched exponential models, single parameters yield the highest AUCs, whereas for the biexponential and gamma distribution models, linear combinations of parameters produce the highest AUCs. Parameters with high AUC show a trend in differentiating low from high Gleason score, whereas parameters with low AUC show no such ability. CONCLUSION: All models, including a monoexponential fit to a lower-b sub-range, achieve similar AUCs for discrimination of normal and cancer tissue. The biexponential model, which is favored statistically, also appears to provide insight into disease-related microstructural changes. Magn Reson Med 79:2346-2358, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Diffusion Magnetic Resonance Imaging , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Adult , Aged , Algorithms , Area Under Curve , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Grading , Normal Distribution , Phantoms, Imaging , Probability , ROC Curve
17.
Neurodiagn J ; 57(1): 69-83, 2017.
Article in English | MEDLINE | ID: mdl-28436813

ABSTRACT

PURPOSE: To investigate the heating of EEG electrodes during magnetic resonance imaging (MRI) scans and to better understand the underlying physical mechanisms with a focus on the antenna effect. MATERIALS AND METHODS: Gold cup and conductive plastic electrodes were placed on small watermelons with fiberoptic probes used to measure electrode temperature changes during a variety of 1.5T and 3T MRI scans. A subset of these experiments was repeated on a healthy human volunteer. RESULTS: The differences between gold and plastic electrodes did not appear to be practically significant. For both electrode types, we observed heating below 4°C for straight wires whose lengths were multiples of ½ the radiofrequency (RF) wavelength and stronger heating (over 15°C) for wire lengths that were odd multiples of » RF wavelength, consistent with the antenna effect. CONCLUSIONS: The antenna effect, which has received little attention so far in the context of EEG-MRI safety, can play as significant a role as the loop effect (from electromagnetic induction) in the heating of EEG electrodes, and therefore wire lengths that are odd multiples of » RF wavelength should be avoided. These results have important implications for the design of EEG electrodes and MRI studies as they help to minimize the risk to patients undergoing MRI with EEG electrodes in place.


Subject(s)
Electroencephalography/adverse effects , Magnetic Resonance Imaging/adverse effects , Electrodes , Electroencephalography/instrumentation , Electroencephalography/methods , Head/diagnostic imaging , Hot Temperature , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Male , Materials Testing , Middle Aged , Phantoms, Imaging , Radio Waves
18.
Pediatr Radiol ; 47(8): 952-962, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28432403

ABSTRACT

BACKGROUND: Adolescents and women with anorexia nervosa have increased bone marrow fat and decreased bone formation, at least in part due to hormonal changes leading to preferential stem cell differentiation to adipocytes over osteoblasts. OBJECTIVE: The purpose of this study was to evaluate marrow fat content and correlate with age and disease severity using knee MRI with T1 relaxometry (T1-R) and MR spectroscopy (MRS) in 70 adolescents with anorexia nervosa. MATERIALS AND METHODS: We enrolled 70 girls with anorexia nervosa who underwent 3-T knee MRI with coronal T1-W images, T1-R and single-voxel proton MRS at 30 and 60 ms TE. Metaphyses were scored visually on the T1-W images for red marrow. Visual T1 score, T1 relaxometry values, MRS lipid indices and fat fractions were analyzed by regression on age, body mass index (BMI) and bone mineral density (BMD) as disease severity markers. MRS measures included unsaturated fat index, T2 water, unsaturated and saturated fat fractions. RESULTS: All red marrow measures declined significantly with age. T1-R values were associated negatively with BMI and BMD for girls ≤16 years (P=0.03 and P=0.002, respectively) and positively for those≥17 years (P=0.05 and P=0.003, respectively). MRS identified a strong inverse association between T2 water and saturated fat fraction from 60 ms TE data (r=-0.85, P<0.0001). There was no association between unsaturated fat index and BMI or BMD. CONCLUSIONS: The association between T1 and BMI and BMD among older girls suggests more marrow fat in those with severe anorexia nervosa. In contrast, the physiological association between marrow fat content and age remained dominant in younger patients. The strong association between T2 water and saturated fat may relate to the restricted mobility of water with increasing marrow fat.


Subject(s)
Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Anorexia Nervosa/diagnostic imaging , Anorexia Nervosa/pathology , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Knee/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Adolescent , Age Factors , Child , Female , Humans , Severity of Illness Index
19.
Magn Reson Med ; 77(2): 613-622, 2017 02.
Article in English | MEDLINE | ID: mdl-26864335

ABSTRACT

PURPOSE: To demonstrate the use of anatomic MRI-visible three-dimensional (3D)-printed phantoms and to assess process accuracy and material MR signal properties. METHODS: A cervical spine model was generated from computed tomography (CT) data and 3D-printed using an MR signal-generating material. Printed phantom accuracy and signal characteristics were assessed using 120 kVp CT and 3 Tesla (T) MR imaging. The MR relaxation rates and diffusion coefficient of the fabricated phantom were measured and 1 H spectra were acquired to provide insight into the nature of the proton signal. Finally, T2 -weighted imaging was performed during cryoablation of the model. RESULTS: The printed model produced a CT signal of 102 ± 8 Hounsfield unit, and an MR signal roughly 1/3rd that of saline in short echo time/short repetition time GRE MRI (456 ± 36 versus 1526 ± 121 arbitrary signal units). Compared with the model designed from the in vivo CT scan, the printed model differed by 0.13 ± 0.11 mm in CT, and 0.62 ± 0.28 mm in MR. The printed material had T2 ∼32 ms, T2*∼7 ms, T1 ∼193 ms, and a very small diffusion coefficient less than olive oil. MRI monitoring of the cryoablation demonstrated iceball formation similar to an in vivo procedure. CONCLUSION: Current 3D printing technology can be used to print anatomically accurate phantoms that can be imaged by both CT and MRI. Such models can be used to simulate MRI-guided interventions such as cryosurgeries. Future development of the proposed technique can potentially lead to printed models that depict different tissues and anatomical structures with different MR signal characteristics. Magn Reson Med 77:613-622, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Cervical Vertebrae/diagnostic imaging , Cryosurgery/instrumentation , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Printing, Three-Dimensional/instrumentation , Surgery, Computer-Assisted/instrumentation , Cervical Vertebrae/surgery , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL