Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Virol ; 98(5): e0019724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593321

ABSTRACT

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Norovirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , Capsid Proteins/immunology , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Crystallography, X-Ray , Models, Molecular , Norovirus/immunology
2.
Arch Biochem Biophys ; 753: 109926, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346547

ABSTRACT

Of the more than 100 families of glycosyltransferases, family 1 glycosyltransferases catalyze glycosylation using uridine diphosphate (UDP)-sugar as a sugar donor and are thus referred to as UDP-sugar:glycosyl transferases. The blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin, flavone, and metal ions. Flavone 7-O-ß-glucoside-4'-O-ß-glucoside in the plant is sequentially biosynthesized from flavons by UDP-glucose:flavone 4'-O-glucosyltransferase (NmF4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (NmF4'G7GT). To identify the molecular mechanisms of glucosylation of flavone, the crystal structures of NmF4'G7GT in its apo form and in complex with UDP-glucose or luteolin were determined, and molecular structure prediction using AlphaFold2 was conducted for NmF4'GT. The crystal structures revealed that the size of the ligand-binding pocket and interaction environment for the glucose moiety at the pocket entrance plays a critical role in the substrate preference in NmF4'G7GT. The substrate specificity of NmF4'GT was examined by comparing its model structure with that of NmF4'G7GT. The structure of NmF4'GT may have a smaller acceptor pocket, leading to a substrate preference for non-glucosylated flavones (or flavone aglycones).


Subject(s)
Flavones , Glucosyltransferases , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Ligands , Uridine Diphosphate Glucose/chemistry , Glucose , Glycosyltransferases , Glucosides , Substrate Specificity
3.
Cell Death Dis ; 14(6): 358, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37308486

ABSTRACT

Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Neoplastic Stem Cells , Glycosyltransferases
4.
Biosci Biotechnol Biochem ; 87(1): 74-81, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36307380

ABSTRACT

Lysoplasmalogen-specific phospholipase D (LyPls-PLD) hydrolyzes choline lysoplasmalogen to choline and 1-(1-alkenyl)-sn-glycero-3-phosphate. Mutation of F211 to leucine altered its substrate specificity from lysoplasmalogen to 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). Enzymes specific to lysoPAF have good potential for clinical application, and understanding the mechanism of their activity is important. The crystal structure of LyPls-PLD exhibited a TIM barrel fold assigned to glycerophosphocholine phosphodiesterase, a member of glycerophosphodiester phosphodiesterase. LyPls-PLD possesses a hydrophobic cleft for the binding of the aliphatic chain of the substrate. In the structure of the F211L mutant, Met232 and Tyr258 form a "small lid" structure that stabilizes the binding of the aliphatic chain of the substrate. In contrast, F211 may inhibit small lid formation in the wild-type structure. LysoPAF possesses a flexible aliphatic chain; therefore, a small lid is effective for stabilizing the substrate during catalytic reactions.


Subject(s)
Phospholipase D , Phospholipase D/genetics , Substrate Specificity , Lysophospholipids , Choline
5.
FEBS Open Bio ; 12(3): 560-570, 2022 03.
Article in English | MEDLINE | ID: mdl-35038379

ABSTRACT

Noroviruses have been identified as major causative agents of acute nonbacterial gastroenteritis in humans. Histo-blood group antigens (HBGAs) are thought to play a major role among the host cellular factors influencing norovirus infection. Genogroup I, genotype 9 (GI.9) is the most recently identified genotype within genogroup I, whose representative strain is the Vancouver 730 norovirus. However, the molecular interactions between host antigens and the GI.9 capsid protein have not been investigated in detail. In this study, we demonstrate that the GI.9 norovirus preferentially binds Lewis antigens over blood group A, B, and H antigens, as revealed by an HBGA binding assay using virus-like particles. We determined the crystal structures of the protruding domain of the GI.9 capsid protein in the presence or absence of Lewis antigens. Our analysis demonstrated that Lewis fucose (α1-3/4 fucose) represents a key moiety for the GI.9 protein-HBGA interaction, thus suggesting that Lewis antigens might play a critical role during norovirus infection. In addition to previously reported findings, our observations may support the future design of antiviral agents and vaccines against noroviruses.


Subject(s)
Blood Group Antigens , Norovirus , Binding Sites , Blood Group Antigens/chemistry , Blood Group Antigens/metabolism , Crystallography, X-Ray , Fucose/chemistry , Fucose/metabolism , Humans , Models, Molecular , Norovirus/chemistry , Norovirus/genetics , Norovirus/metabolism , Protein Binding
6.
Commun Biol ; 4(1): 1365, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857854

ABSTRACT

SARS-CoV-2-specific CD8+ T cells are scarce but detectable in unexposed healthy donors (UHDs). It remains unclear whether pre-existing human coronavirus (HCoV)-specific CD8+ T cells are converted to functionally competent T cells cross-reactive to SARS-CoV-2. Here, we identified the HLA-A24-high binding, immunodominant epitopes in SARS-CoV-2 spike region that can be recognized by seasonal coronavirus-specific CD8+ T cells from HLA-A24+ UHDs. Cross-reactive CD8+ T cells were clearly reduced in patients with hematological malignancy, who are usually immunosuppressed, compared to those in UHDs. Furthermore, we showed that CD8+ T cells in response to a selected dominant epitope display multifunctionality and cross-functionality across HCoVs in HLA-A24+ donors. Cross-reactivity of T-cell receptors isolated from them exhibited selective diversity at the single-cell level. Taken together, when stimulated well by immunodominant epitopes, selective pre-existing CD8+ T cells with high functional avidity may be cross-reactive against SARS-CoV-2.


Subject(s)
Antigens, Viral/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cross Reactions , Humans
7.
Phytochemistry ; 186: 112727, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33743393

ABSTRACT

The acylation of anthocyanins contributes to their structural diversity. Aromatic acylation is responsible for the blue color of anthocyanins and certain flowers. Aromatic acyltransferase from Gentiana triflora Pall. (Gentianaceae) (Gt5,3'AT) catalyzes the acylation of glucosyl moieties at the 5 and 3' positions of anthocyanins. Anthocyanin acyltransferase transfers an acyl group to a single position, such that Gt5,3'AT possesses a unique enzymatic activity. Structural investigation of this aromatic acyl group transfer is fundamental to understand the molecular mechanism of the acylation of double positions. In this study, structural analyses of Gt5,3'AT were conducted to identify the underlying mechanism. The crystal structure indicated that Gt5,3'AT shares structural similarities with other BAHD family enzymes, consisting of N and C terminal lobes. Structural comparison revealed that acyl group preference (aromatic or aliphatic) for the enzymes was determined by four amino acid positions, which are well conserved in aromatic and aliphatic CoA-binding acyltransferases. Although a complex structure with anthocyanins was not obtained, the binding of delphinidin 3,5,3'-triglucoside to Gt5,3'AT was investigated by evaluating the molecular dynamics. The simulation indicated that acyl transfer by Gt5,3'AT preferentially occurs at the 5-position rather than at the 3'-position, with interacting amino acids that are mainly located in the C-terminal lobe. Subsequent assays of chimeric enzymes (exchange of the N-terminal lobe and the C-terminal lobe between Gt5,3'AT and lisianthus anthocyanin 5AT) demonstrated that acyl transfer selectivity may be caused by the C-terminal lobe.


Subject(s)
Anthocyanins , Gentiana , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Anthocyanins/metabolism , Flowers/metabolism , Gentiana/metabolism
8.
Int J Biol Macromol ; 170: 415-423, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33373636

ABSTRACT

Alzheimer's disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aß, which acts as a potential seed for the aggregation of full length Aß. Preventing the formation of pGlu-Aß through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34 µM). Systematic molecular docking, MD simulations and X-ray crystallographic analysis provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this molecule an attractive candidate for designing high affinity sQC inhibitors.


Subject(s)
Aminoacyltransferases/antagonists & inhibitors , Piperidines/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Humans , Molecular Docking Simulation , Pyrrolidonecarboxylic Acid/metabolism
9.
J Struct Biol ; 212(3): 107661, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33166654

ABSTRACT

Smad6 and Smad7 are classified as inhibitory Smads (I-Smads). They are crucial in the fine-tuning of signals by cytokines of the transforming growth factor-ß (TGF-ß) family. They are negative feedback regulators and principally target the activated type I receptors as well as the activated Smad complexes, but with distinct specificities. Smad7 inhibits Smad signaling from all seven type I receptors of the TGF-ß family, whereas Smad6 preferentially inhibits Smad signaling from the bone morphogenetic protein (BMP) type I receptors, BMPR1A and BMPR1B. The target specificities are attributed to the C-terminal MH2 domain. Notably, Smad7 utilizes two alternative molecular surfaces for its inhibitory function against type I receptors. One is a basic groove composed of the first α-helix and the L3 loop, a structure that is shared with Smad6 and receptor-regulated Smads (R-Smads). The other is a three-finger-like structure (consisting of residues 331-361, 379-387, and the L3 loop) that is unique to Smad7. The underlying structural basis remains to be elucidated in detail. Here, we report the crystal structure of the MH2 domain of mouse Smad7 at 1.9 Å resolution. The three-finger-like structure is stabilized by a network of hydrogen bonds between residues 331-361 and 379-387, thus forming a molecular surface unique to Smad7. Furthermore, we discuss how Smad7 antagonizes the activated Smad complexes composed of R-Smad and Smad4, a common partner Smad.


Subject(s)
Signal Transduction/physiology , Smad7 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/metabolism , Hydrogen Bonding , Mice , Protein Conformation, alpha-Helical/physiology , Protein Domains/physiology , Smad4 Protein/metabolism , Smad6 Protein/metabolism
10.
ChemistryOpen ; 7(9): 721-727, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30214852

ABSTRACT

Gefitinib is the molecular target drug for advanced non-small-cell lung cancer. The primary target of gefitinib is the positive mutation of epidermal growth factor receptor, but it also inhibits cyclin G-associated kinase (GAK). To reveal the molecular bases of GAK and gefitinib binding, structure analyses were conducted and determined two forms of the gefitinib-bound nanobody⋅GAK kinase domain complex structures. The first form, GAK_1, has one gefitinib at the ATP binding pocket, whereas the second form, GAK_2, binds one each in the ATP binding site and a novel binding site adjacent to the activation segment C-terminal helix, a unique element of the Numb-associated kinase family. In the novel binding site, gefitinib binds in the hydrophobic groove around the activation segment, disrupting the conserved hydrogen bonds for the catalytic activity. These structures suggest possibilities for the development of selective GAK inhibitors for viral infections, such as the hepatitis C virus.

11.
J Biochem ; 161(1): 45-53, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27616715

ABSTRACT

Cucumisin [EC 3.4.21.25], a subtilisin-like serine endopeptidase, was isolated from melon fruit, Cucumis melo L. Mature cucumisin (67 kDa, 621 residues) is produced by removal of the propeptide (10 kDa, 88 residues) from the cucumisin precursor by subsequence processing. It is reported that cucumisin is inhibited by its own propeptide. The crystal structure of mature cucumisin is reported to be composed of three domains: the subtilisin-like catalytic domain, the protease-associated domain and the C-terminal fibronectin-III-like domain. In this study, the crystal structure of the mature cucumisin•propeptide complex was determined by the molecular replacement method and refined at 1.95 Å resolution. In this complex, the propeptide had a domain of the α-ß sandwich motif with four-stranded antiparallel ß-sheets, two helices and a strand of the C-terminal region. The ß-sheets of the propeptide bind to two parallel surface helices of cucumisin through hydrophobic interaction and 27 hydrogen bonds. The C-terminus of the propeptide binds to the cleft of the active site as peptide substrates. The inhibitory assay suggested that the C-terminal seven residues of the propeptide do not inhibit the cucumisin activity. The crystal structure of the cucumisin•propeptide complex revealed the regulation mechanism of cucumisin activity.


Subject(s)
Cucurbitaceae/enzymology , Enzyme Precursors/chemistry , Plant Proteins/chemistry , Serine Endopeptidases/chemistry , Crystallography, X-Ray , Protein Domains
12.
J Biol Chem ; 290(49): 29438-48, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26472923

ABSTRACT

Protein interacting with C kinase 1 (PICK1) is a synaptic protein interacting with the AMPA receptor subunits GluA2/3. The interaction between GluA2 and PICK1 is required for the removal of GluA2 from the synaptic plasma membrane during long-term depression (LTD). It has been suggested that glycogen synthase kinase 3ß (GSK-3ß) is activated during LTD, but the relationships between GluA2, PICK1, and GSK-3ß are not well understood. In particular, the substrate(s) of GSK-3ß have not yet been determined. Here we showed that PICK1 is a substrate of GSK-3ß. We found that Ser(339), Ser(342), Ser(412), and Ser(416) of PICK1 were putative GSK-3ß-mediated phosphorylation sites. Among these sites, Ser(416) played a crucial role in regulating the interaction between GluA2 and PICK1. We showed that replacing Ser(416) with Ala disrupted the GluA2-PICK1 interaction, whereas substituting Ser(416) with Glu or Asp retained this interaction. However, deletion of Ser(416) did not affect the GluA2-PICK1 interaction, and substitution of Ser(416) with Ala did not alter the PICK1-PICK1 interaction. Using image analysis in COS-7 cells with AcGFP1-fused PICK1, we showed that substitution of Ser(416) with Ala increased the formation of AcGFP1-positive clusters, suggesting an increase in the association of PICK1 with the membrane. This may have resulted in the dissociation of the GluA2-PICK1 complexes. Our results indicated that GSK-3ß-mediated phosphorylation of PICK1 at Ser(416) was required for its association with the AMPA receptor subunit. Therefore, the GSK-3ß-mediated phosphorylation of PICK1 may be a regulating factor during LTD induction.


Subject(s)
Carrier Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Cytoskeletal Proteins , Glutamic Acid/chemistry , Glycogen Synthase/metabolism , Glycogen Synthase Kinase 3 beta , Immunoprecipitation , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Rats , Receptors, AMPA/metabolism , Sequence Homology, Amino Acid , Serine/chemistry
13.
Front Neurol ; 5: 26, 2014.
Article in English | MEDLINE | ID: mdl-24653715

ABSTRACT

Alzheimer's disease is a progressive dementia that is characterized by a loss of recent memory. Evidence has accumulated to support the hypothesis that synapses are critical storage sites for memory. However, it is still uncertain whether tau protein is involved in associative memory storage and whether tau is distributed in mature brain synapses. To address this question, we examined the synaptosomal distribution of tau protein in both JNPL3 transgenic mice expressing human P301L tau and non-transgenic littermates. The JNPL3 mouse line is known as one of the mouse models of human tauopathy that develop motor and behavioral deficits with intracellular tau aggregates in the spinal cord and brainstem. The phenotype of disease progression is highly dependent on strain background. In this study, we confirmed that male JNPL3 transgenic mice with C57BL/6J strain background showed neither any sign of motor deficits nor accumulation of hyperphosphorylated tau in the sarkosyl-insoluble fraction until 18 months of age. Subcellular fractionation analysis showed that both mouse tau and human P301L tau were present in the synaptosomal fraction. Those tau proteins were less-phosphorylated than tau in the cytosolic fraction. Human P301L tau was preferentially distributed in the synaptosomal fraction while mouse endogenous tau was more distributed in the cytosolic fraction. Interestingly, a human-specific tau band with phosphorylation at Ser199 and Ser396 was observed in the synaptosomal fraction of JNPL3 mice. This tau was not identical to either tau species in cytosolic fraction or a prominent hyperphosphorylated 64 kDa tau species that was altered to tau pathology. These results suggest that exogenous human P301L tau induces synaptosomal distribution of tau protein with a certain phosphorylation. Regulating the synaptosomal tau level might be a potential target for a therapeutic intervention directed at preventing neurodegeneration.

14.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130144, 2014 Jan 05.
Article in English | MEDLINE | ID: mdl-24298146

ABSTRACT

The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Hippocampus/physiology , Long-Term Synaptic Depression/physiology , Synapses/physiology , Tauopathies/physiopathology , tau Proteins/metabolism , Animals , Blotting, Western , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microdissection , Microscopy, Electron , Phosphorylation , RNA Interference , Rats , Rats, Wistar , Subcellular Fractions , tau Proteins/genetics
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1455-9, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23192023

ABSTRACT

Xpln is a guanine nucleotide-exchange factor (GEF) for Rho GTPases. A Dbl homology (DH) domain followed by a pleckstrin homology (PH) domain is a widely adopted GEF-domain architecture. The Xpln structure solely comprises these two domains. Xpln activates RhoA and RhoB, but not RhoC, although their GTPase sequences are highly conserved. The molecular mechanism of the selectivity of Xpln for Rho GTPases is still unclear. In this study, the crystal structure of the tandemly arranged DH-PH domains of mouse Xpln, with a single molecule in the asymmetric unit, was determined at 1.79 Šresolution by the multiwavelength anomalous dispersion method. The DH-PH domains of Xpln share high structural similarity with those from neuroepithelial cell-transforming gene 1 protein, PDZ-RhoGEF, leukaemia-associated RhoGEF and intersectins 1 and 2. The crystal structure indicated that the α4-α5 loop in the DH domain is flexible and that the DH and PH domains interact with each other intramolecularly, thus suggesting that PH-domain rearrangement occurs upon RhoA binding.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Protein Structure, Tertiary , Animals , Binding Sites , Crystallography, X-Ray , Guanine Nucleotide Exchange Factors/metabolism , Mice , Models, Molecular , Rho Guanine Nucleotide Exchange Factors
16.
J Mol Biol ; 423(3): 386-96, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22841692

ABSTRACT

Cucumisin is a plant serine protease, isolated as an extracellular glycoprotein from the melon fruit Cucumis melo L. var. Prince. Cucumisin is composed of multiple domain modules, including catalytic, protease-associated, and fibronectin-III-like domains. The crystal structure of cucumisin was determined by the multiwavelength anomalous dispersion method and refined at 2.75Å resolution. A structural homology search indicated that the catalytic domain of cucumisin shares structural similarity with subtilisin and subtilisin-like fold enzymes. According to the Z-score, the highest structural similarity is with tomato subtilase 3 (SBT3), with an rmsd of 3.5Å for the entire region. The dimer formation mediated by the protease-associated domain in SBT3 is a distinctive structural characteristic of cucumisin. On the other hand, analytical ultracentrifugation indicated that cucumisin is mainly monomeric in solution. Although the locations of the amino acid residues composing the catalytic triad are well conserved between cucumisin and SBT3, a disulfide bond is uniquely located near the active site of cucumisin. The steric circumstances of the active site with this disulfide bond are distinct from those of SBT3, and it contributes to the substrate preference of cucumisin, especially at the P2 position. Among the plant serine proteases, the thermostability of cucumisin is higher than that of its structural homologue SBT3, as determined by their melting points. A structural comparison between cucumisin and SBT3 revealed that cucumisin possesses less surface area and shortened loop regions. Consequently, the higher thermostability of cucumisin is achieved by its more compact structure.


Subject(s)
Catalytic Domain , Cucumis melo/enzymology , Serine Endopeptidases/chemistry , Subtilisin/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Molecular Sequence Data , Sequence Alignment , Serine Endopeptidases/metabolism
17.
Aging Cell ; 11(1): 51-62, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21981382

ABSTRACT

Oxidative stress is considered to promote aging and age-related disorders such as tauopathy. Although recent reports suggest that oxidative stress under certain conditions possesses anti-aging properties, no such conditions have been reported to ameliorate protein-misfolding diseases. Here, we used neuronal and murine models that overexpress human tau to demonstrate that mild oxidative stress generated by alloxan suppresses several phenotypes of tauopathy. Alloxan treatment reduced HSP90 levels and promoted proteasomal degradation of tau, c-Jun N-amino terminal kinase, and histone deacetylase (HDAC) 6. Moreover, reduced soluble tau (phosphorylated tau) levels suppressed the formation of insoluble tau in tau transgenic mice, while reduced HDAC6 levels contributed to microtubule stability by increasing tubulin acetylation. Age-dependent decreases in HDAC2 and phospho-tau levels correlated with spatial memory enhancement in alloxan-injected tau mice. These results suggest that mild oxidative stress, through adaptive stress responses, operates counteractively against some of the tauopathy phenotypes.


Subject(s)
Aging/psychology , Alloxan/administration & dosage , Neurons/metabolism , Oxidative Stress/physiology , Tauopathies/metabolism , tau Proteins/metabolism , Acetylation , Adaptation, Physiological/drug effects , Aging/drug effects , Alloxan/therapeutic use , Animals , Disease Models, Animal , Female , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylase 6 , Histone Deacetylases/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/pathology , Phenotype , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Tauopathies/drug therapy , Tauopathies/pathology , Tubulin/metabolism , tau Proteins/genetics
18.
Structure ; 19(10): 1496-508, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-22000517

ABSTRACT

Adenomatous polyposis coli (APC) is a tumor suppressor protein commonly mutated in colorectal tumors. APC plays important roles in Wnt signaling and other cellular processes. Here, we present the crystal structure of the armadillo repeat (Arm) domain of APC, which facilitates the binding of APC to various proteins. APC-Arm forms a superhelix with a positively charged groove. We also determined the structure of the complex of APC-Arm with the tyrosine-rich (YY) domain of the Src-associated in mitosis, 68 kDa protein (Sam68), which regulates TCF-1 alternative splicing. Sam68-YY forms numerous interactions with the residues on the groove and is thereby fixed in a bent conformation. We assessed the effects of mutations and phosphorylation on complex formation between APC-Arm and Sam68-YY. Structural comparisons revealed different modes of ligand recognition between the Arm domains of APC and other Arm-containing proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adenomatous Polyposis Coli Protein/chemistry , DNA-Binding Proteins/chemistry , Multiprotein Complexes/chemistry , RNA-Binding Proteins/chemistry , Alternative Splicing , Cloning, Molecular , Computer Simulation , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Mutation, Missense , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Selenomethionine/chemistry , X-Ray Diffraction
19.
J Biol Chem ; 285(49): 38692-9, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20921222

ABSTRACT

Neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau, are hallmarks of neurodegenerative diseases including Alzheimer disease (AD). In neurodegenerative diseases, neuronal dysfunction due to neuronal loss and synaptic loss accompanies NFT formation, suggesting that a process associated with NFT formation may be involved in neuronal dysfunction. To clarify the relationship between the tau aggregation process and synapse and neuronal loss, we compared two lines of mice expressing human tau with or without an aggregation-prone P301L mutation. P301L tau transgenic (Tg) mice exhibited neuronal loss and produced sarcosyl-insoluble tau in old age but did not exhibit synaptic loss and memory impairment. By contrast, wild-type tau Tg mice neither exhibited neuronal loss nor produced sarcosyl-insoluble tau but did exhibit synaptic loss and memory impairment. Moreover, P301L tau was less phosphorylated than wild-type tau, suggesting that the tau phosphorylation state is involved in synaptic loss, whereas the tau aggregation state is involved in neuronal loss. Finally, increasing concentrations of insoluble tau aggregates leads to the formation of fibrillar tau, which causes NFTs to form.


Subject(s)
Alzheimer Disease/metabolism , Detergents/chemistry , Mutation, Missense , Neurofibrillary Tangles/metabolism , Neurons/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amino Acid Substitution , Animals , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Neurons/pathology , Phosphorylation/genetics , tau Proteins/genetics
20.
J Biol Chem ; 284(51): 35896-905, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-19801550

ABSTRACT

The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-DeltaC) was solved in an oligomeric state. The molecular structure of BMRF1-DeltaC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-DeltaC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-DeltaC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-DeltaC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-DeltaC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-DeltaC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.


Subject(s)
Antigens, Viral/chemistry , Herpesvirus 4, Human/chemistry , Antigens, Viral/genetics , Antigens, Viral/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Mutation , Protein Binding/physiology , Protein Structure, Quaternary/physiology , Protein Structure, Tertiary/physiology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL