Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Reprod Toxicol ; 120: 108442, 2023 09.
Article in English | MEDLINE | ID: mdl-37473928

ABSTRACT

Groups of 24 weanling female Sprague-Dawley rats were administered molybdenum (Mo) as sodium molybdate dihydrate (SMD) in drinking water at target dose levels of 0, 20, or 40 mg Mo/kg bw/day and fed a semi-purified marginal copper (6.2 ppm Cu) AIN-93 G diet for 8 weeks prior to mating, through cohabitation and pregnancy until Gestation Day 21. The objective was to confirm the reproductive and developmental effects of SMD reported by Fungwe et al. (1990) at estimated doses as low as 1.5 mg Mo/kg bw/day in a similarly designed study with marginal Cu diet (6.3 ppm). There were no test material-related effects at 20 or 40 mg Mo/kg bw/day on mortality, clinical observations, body weight, body weight gain, food consumption, estrous cycling, reproductive performance, maternal macroscopic pathology, ovarian or uterine parameters, litter size, resorptions, fetal sex ratio, fetal weight, or external fetal malformations or variations. Water consumption was increased compared to controls at both dose levels during the pre-mating and gestation periods, with no apparent adverse impact. There was no evidence of copper depletion in serum at any dose level. In conclusion, the no-observed-adverse-effect levels (NOAELs) for systemic, maternal reproductive, and developmental toxicity in this marginal Cu diet study are 40 mg Mo/kg bw/day, consistent with the results of guideline developmental and reproductive toxicity studies of SMD. The results of Fungwe et al. were not replicated, even at higher dose levels of Mo, and their inconsistencies with guideline toxicity studies of Mo are not explained by the marginal dietary Cu level.


Subject(s)
Copper , Molybdenum , Pregnancy , Rats , Animals , Female , Rats, Sprague-Dawley , Copper/toxicity , Molybdenum/toxicity , Reproduction , Diet , Fetal Weight , Body Weight
2.
Regul Toxicol Pharmacol ; 122: 104892, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33592196

ABSTRACT

In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.


Subject(s)
Acetaminophen/analysis , Animals , Carcinogenesis , Cell Cycle/drug effects , Chromosome Aberrations/drug effects , DNA Damage/drug effects , Humans , Mutagenicity Tests , Mutagens
3.
Regul Toxicol Pharmacol ; 120: 104859, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388367

ABSTRACT

In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.


Subject(s)
Acetaminophen/toxicity , Biochemical Phenomena/drug effects , Carcinogens/toxicity , Chemical and Drug Induced Liver Injury , Liver/drug effects , Signal Transduction/drug effects , Animals , Biochemical Phenomena/physiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , DNA Damage/drug effects , DNA Damage/physiology , Humans , Liver/metabolism , Liver/pathology , Signal Transduction/physiology
4.
Regul Toxicol Pharmacol ; 118: 104788, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33153971

ABSTRACT

In 2019, the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. The objective of the analysis herein was to inform this review by assessing whether variability in patient baseline characteristics (e.g. baseline glutathione (GSH) levels, pharmacokinetics, and capacity of hepatic antioxidants) leads to potential differences in carcinogenic hazard potential at different dosing schemes: maximum labeled doses of 4 g/day, repeated doses above the maximum labeled dose (>4-12 g/day), and acute overdoses of acetaminophen (>15 g). This was achieved by performing simulations of acetaminophen exposure in thousands of diverse virtual patients scenarios using the DILIsym® Quantitative Systems Toxicology (QST) model. Simulations included assessments of the dose and exposure response for toxicity and mode of cell death based on evaluations of the kinetics of changes of: GSH, N-acetyl-p-benzoquinone-imine (NAPQI), protein adducts, mitochondrial dysfunction, and hepatic cell death. Results support that, at therapeutic doses, cellular GSH binds to NAPQI providing sufficient buffering capacity to limit protein adduct formation and subsequent oxidative stress. Simulations evaluating repeated high-level supratherapeutic exposures or acute overdoses indicate that cell death precedes DNA damage that could result in carcinogenicity and thus acetaminophen does not present a carcinogenicity hazard to humans at any dose.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/administration & dosage , Carcinogenicity Tests , Chemical and Drug Induced Liver Injury/etiology , Computer Simulation , Liver Neoplasms/chemically induced , Liver/drug effects , Acetaminophen/pharmacokinetics , Analgesics, Non-Narcotic/pharmacokinetics , Antioxidants/metabolism , Cell Death/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , DNA Damage , Dose-Response Relationship, Drug , Glutathione/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Risk Assessment
5.
Regul Toxicol Pharmacol ; 118: 104801, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33039518

ABSTRACT

In 2019 the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of the long-term rodent carcinogenicity and tumor initiation/promotion studies. The objective of the analysis herein was to inform this review process with a weight-of-evidence assessment of these studies and an assessment of the relevance of these models to humans. In most of the 14 studies, there were no increases in the incidences of tumors in any organ system. In the few studies in which an increase in tumor incidence was observed, there were factors such as absence of a dose response and a rodent-specific tumor supporting that these findings are not relevant to human hazard identification. In addition, we performed qualitative analysis and quantitative simulations of the exposures to acetaminophen and its metabolites and its toxicity profile; the data support that the rodent models are toxicologically relevant to humans. The preclinical carcinogenicity results are consistent with the broader weight of evidence assessment and evaluations of multiple international health authorities supporting that acetaminophen is not a carcinogenic hazard.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Carcinogenicity Tests , Cell Transformation, Neoplastic/chemically induced , Neoplasms/chemically induced , Acetaminophen/pharmacokinetics , Analgesics, Non-Narcotic/pharmacokinetics , Animals , Biotransformation , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Rats , Risk Assessment , Species Specificity , Toxicokinetics
6.
Reprod Toxicol ; 84: 75-92, 2019 03.
Article in English | MEDLINE | ID: mdl-30503857

ABSTRACT

In an OECD Test Guideline 416 multigenerational study, groups of 24 male and 24 female Sprague-Dawley rats were administered sodium molybdate dihydrate at 0, 5, 17, or 40 mg molybdenum (Mo)/kg bw/day in the drinking water or 40 mg Mo/kg bw/day in the diet over two generations to assess reproductive toxicity. No adverse effect on reproductive function was observed at any dose level in either generation as indicated by no significant dose-related effect on estrus cycles, sperm parameters, mating, fertility, gestation, litter size, pup survival, growth or postnatal development. Systemic toxicity, including decreased body weight, food consumption (males only) and water consumption, was observed among both sexes given 40 mg Mo/kg bw/day in the diet. Serum levels of Mo and copper were increased in a dose-related manner. The No Observed Adverse Effect Levels (NOAEL) are 17 mg Mo/kg bw/day for systemic toxicity and 40 mg Mo/kg bw/day for reproductive toxicity.


Subject(s)
Molybdenum/toxicity , Animals , Body Weight/drug effects , Diet , Drinking Water , Eating/drug effects , Female , Male , Molybdenum/blood , Molybdenum/pharmacokinetics , Molybdenum/urine , No-Observed-Adverse-Effect Level , Pregnancy , Rats, Sprague-Dawley , Reproductive Physiological Phenomena/drug effects
7.
Regul Toxicol Pharmacol ; 73(2): 501-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26456664

ABSTRACT

4-Methylimidazole (4-MEI) occurs in certain foods and beverages as a product of browning reactions. An increased incidence of lung tumors was reported in mice, but not rats, exposed to levels of 4-MEI in their diet that far exceed human dietary intake. This investigation evaluated the hypothesis that 4-MEI induces mouse lung tumors by the same mode of action (MOA) as styrene: CYP2F2 metabolic activation and increased BrdU labeling. Using styrene (200 mg/kg/day by gavage) as a positive control, histopathology and DNA synthesis (measured by BrdU incorporation) in the bronchiolar region were evaluated in: (1) a 5-day comparative toxicity study in C57BL/6 "wild type" and CYP2F2 "knock out" (KO) mice given 4-MEI at the same dietary concentrations used in the NTP cancer bioassay, and (2) a 13-week comparative toxicity study of C57BL/6 and B6C3F1 mice receiving 0, 1250 or 2500 ppm of 4-MEI in the diet for 6, 15, 34 and 91 days. In contrast to styrene, 4-MEI had no consistent effect on BrdU labeling or histopathology in the lungs of mice in the dose range that had been shown to produce lung tumors in another study. The results of these studies do not support the hypothesis that 4-MEI and styrene induce lung tumors by the same MOA.


Subject(s)
Imidazoles/toxicity , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Styrene/toxicity , Animals , Drug Evaluation, Preclinical/methods , Female , Imidazoles/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Styrene/administration & dosage
8.
Regul Toxicol Pharmacol ; 70(2 Suppl): S69-79, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24845242

ABSTRACT

Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley rats exposed via inhalation on gestation days (GD) 5-20 for 6h/day at levels of 0 (control filtered air), 2000, 10,000, and 20,000mg/m(3). These exposure durations and levels substantially exceed typical consumer exposure during refueling (<1-7mg/m(3), 5min). Dose responsive maternal effects were reduced maternal body weight and/or weight change, and/or reduced food consumption. No significant malformations were seen in any study. Developmental effects occurred at 20,000mg/m(3) of G/TAME (reduced fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000mg/m(3) for these materials. Developmental NOAELs for other materials were 20,000mg/m(3) as no developmental toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concurrent maternal NOAELs which ranged from 2000 to 20,000mg/m(3). There were no clear cut differences in developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol oxygenates.


Subject(s)
Air Pollutants/toxicity , Fetal Development/drug effects , Gasoline/toxicity , Animals , Female , Fetal Weight/drug effects , Inhalation , Male , Rats , Rats, Sprague-Dawley , Risk Assessment , Toxicity Tests
9.
Regul Toxicol Pharmacol ; 70(3): 579-88, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24041747

ABSTRACT

This study investigated the subchronic toxicity of molybdenum (Mo) in Sprague-Dawley rats given sodium molybdate dihydrate in the diet for 90days at dose levels of 0, 5, 17 or 60mgMo/kgbw/day. The study complied with OECD Test Guideline (TG) 408, with additional examination of estrus cycles and sperm count, motility, and morphology from OECD TG 416. The overall no-observed-adverse-effect level was 17mgMo/kgbw/day, based on effects on body weight, body weight gain, food conversion efficiency and renal histopathology (females only) at 60mgMo/kgbw/day. No treatment-related adverse effects on reproductive organ weights or histopathology, estrus cycles or sperm parameters were observed at any dose level. No adverse effects were observed in the high dose animals after the 60-day recovery period, with the exception that male rats did not fully recover from reduced body weight. Serum blood, liver and kidney samples were analyzed for molybdenum, copper, zinc, manganese, iron, cobalt and selenium; high levels of molybdenum and copper were found in the serum, blood, liver and kidneys of rats treated with 60mgMo/kgbw/day. In conclusion, the LOAEL and NOAEL for molybdenum were determined to be 60 and 17mgMo/kgbw/day, respectively.


Subject(s)
Molybdenum/toxicity , Animals , Body Weight/drug effects , Copper/blood , Copper/metabolism , Estrous Cycle/drug effects , Female , Genitalia/anatomy & histology , Genitalia/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/anatomy & histology , Liver/drug effects , Liver/metabolism , Male , Molybdenum/blood , Molybdenum/pharmacokinetics , No-Observed-Adverse-Effect Level , Rats, Sprague-Dawley , Sperm Count , Toxicity Tests, Subchronic
10.
Regul Toxicol Pharmacol ; 67(2 Suppl): S30-45, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23751816

ABSTRACT

A study was undertaken within the context of the U.S. EPA HPV Chemical Challenge Program to (1) characterize relationships between PAC content and repeat-dose toxicities of high-boiling petroleum substances (HBPS) and (2) develop statistical models that could be used to predict the repeat-dose toxicity of similar untested substances. The study evaluated 47 repeat-dose dermal toxicity and 157 chemical compositional studies. The four most sensitive endpoints of repeat-dose toxicity were platelet count, hemoglobin concentration, relative liver weight and thymus weight. Predictive models were developed for the dose-response relationships between the wt.% concentration of each of seven ring classes of aromatic compounds (the "ARC profile") and specific effects, with high correlations (r=0.91-0.94) between the observed and model-predicted data. The development of the mathematical models used to generate the results reported in this study is described by Nicolich et al. (2013). Model-generated dose-response curves permit the prediction of either the effect at a given dose or the dose that causes a given effect. The models generate values that are consistent with other standard measures. The models, using compositional data, can be used for predicting the repeat-dose toxicity of untested HBPS.


Subject(s)
Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Dose-Response Relationship, Drug , Models, Statistical , Polycyclic Aromatic Hydrocarbons/chemistry , Toxicity Tests, Chronic , Toxicity Tests, Subacute , Transition Temperature
11.
Regul Toxicol Pharmacol ; 67(2 Suppl): S46-59, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23680405

ABSTRACT

In response to the US EPA HPV Challenge Program, this study was conducted to: (1) evaluate the relationship between PAC content and the developmental toxicity of high-boiling petroleum substances (HBPS) and (2) develop mathematical models to predict the developmental toxicity of similar untested substances based on their aromatic ring class (ARC) profiles. For this investigation, 68 developmental toxicity studies were reviewed. The ARC models relied on data from 21 rat dermal developmental toxicity studies conducted with similar experimental designs to ensure a consistent data set for comparison. The most sensitive general endpoints of developmental toxicity (i.e., decreased fetal survival and growth) were chosen for modeling. The ARC models demonstrated a strong correlation between the predicted vs. observed values for specific sensitive endpoints of these developmental toxicities (percent resorptions, r=0.99; live fetuses per litter, r=0.98; fetal body weight, r=0.94). Such associations provide a promising approach for predicting the developmental toxicity of untested HBPS. Efforts to corroborate the ARC models using test substances that were not used to build the ARC models produced mixed results, and further development and refinement of the ARC models is recommended before they can be reliably applied to all HBPS.


Subject(s)
Models, Statistical , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Dose-Response Relationship, Drug , Fetal Development/drug effects , Polycyclic Aromatic Hydrocarbons/chemistry , Rats , Transition Temperature
12.
Regul Toxicol Pharmacol ; 67(2 Suppl): S60-74, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23624350

ABSTRACT

To meet the EPA HPV Chemical Challenge Program requirement for reproductive toxicity data on sponsored high-boiling petroleum substances (HBPS), an analysis was conducted using the results of 39 repeat-dose and 59 developmental rat dermal toxicity studies on HBPS samples spanning the boiling range of the sponsored substances, and the results of three one-generation reproductive toxicity studies on two samples spanning the concentration range of polycyclic aromatic compounds of sponsored substances. The analysis found little evidence of male or female reproductive tract toxicity based on histopathology, reproductive organ weight, and sperm parameters, and no evidence of effects on fertility, while significant developmental toxicity and/or systemic repeat-dose toxicity were frequently observed. Among 14 samples of HBPS tested in both repeat-dose toxicity and developmental toxicity studies, there were no studies in which an adverse reproductive tract finding occurred at a dose lower than that producing developmental toxicity or other adverse effects in repeat-dose toxicity studies. The current analysis supports the hypothesis that effects in developmental and/or repeat-dose toxicity studies of HBPS occur at doses lower than those that might affect fertility in rat one-generation reproductive studies. When adequate developmental and repeat-dose toxicity studies are available, a reproductive toxicity study of HBPS appears unnecessary.


Subject(s)
Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Reproduction/drug effects , Animals , Female , Male , Polycyclic Aromatic Hydrocarbons/chemistry , Transition Temperature
13.
Regul Toxicol Pharmacol ; 67(2 Suppl): S10-29, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23247261

ABSTRACT

The repeat-dose and developmental toxicities of certain petroleum refinery streams are related to their polycyclic aromatic compound (PAC) content (Feuston et al., 1994). Building on this foundation, and working within the context of the US EPA High Production Volume (HPV) Chemical Challenge Program, we: (1) characterized relationships between PAC content and repeat-dose and developmental toxicities of high boiling petroleum substances (HBPS), and (2) developed statistical models that can be used to predict critical effects of similar untested substances. Data from 39 dermal toxicity studies of HBPS were used to develop statistical models to predict the dose-response relationships between the weight percent concentration of each of their 1-7 aromatic ring classes and 4 repeat-dose and 3 developmental endpoints (absolute thymus weight, hemoglobin count, platelet count, liver to body weight, live fetus count, fetal weight, and percent resorptions). The correlations between the observed and model-predicted values are >0.90. The predictive ability of the models was tested via a series of evaluation or corroboration methods. As is shown in the paper, using only compositional data of untested HBPS, the models can be used to predict the effect at a given dose or the dose that causes an effect of a stipulated magnitude.


Subject(s)
Models, Statistical , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Animals , Dose-Response Relationship, Drug , Female , Fetal Development/drug effects , Fetal Resorption , Hemoglobins/analysis , Litter Size , Liver/drug effects , Liver/growth & development , Mice , Organ Size/drug effects , Platelet Count , Polycyclic Aromatic Hydrocarbons/chemistry , Pregnancy , Rats , Rats, Sprague-Dawley , Thymus Gland/drug effects , Thymus Gland/growth & development , Toxicity Tests , Transition Temperature
14.
Regul Toxicol Pharmacol ; 67(2 Suppl): S4-9, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23247262

ABSTRACT

In 1998, the US EPA announced the HPV Challenge Program, a voluntary chemical data collection effort. The Petroleum HPV Testing Group (PHPVTG(1)) volunteered to provide data on approximately 110 high boiling petroleum substances (HBPS), i.e. substances with final boiling points ≥ approximately 650°F (343°C). These HBPS are substances of unknown and variable composition (UVCBs) that are composed of numerous individual constituents. Toxicity studies have shown that some HBPS can produce systemic (repeat-dose) and developmental effects, and some are mutagenic under in vitro conditions. The papers in this supplement show that these effects are related to the profiles of aromatic constituents in these substances. Further, it is shown that the effects on selected repeat-dose and developmental toxicity endpoints and mutagenic activity in bacterial assays can be predicted from compositional information using models based on the aromatic-ring class profile, "ARC profile" as defined by gas chromatographic separation of the DMSO-soluble fraction of the starting materials. This chromatographic method and the predictive models provide an efficient means of characterizing for screening purposes the potential for repeat-dose, developmental effects and bacterial mutagenicity of HBPS and can reduce the number of animal tests that would be required if these tests were conducted on all 110 HBPS.


Subject(s)
Petroleum/toxicity , Polycyclic Compounds/toxicity , Animals , Chemical Industry , Humans , Models, Statistical , Polycyclic Compounds/chemistry , Risk Assessment , Toxicity Tests , Transition Temperature , United States , United States Environmental Protection Agency
15.
Food Chem Toxicol ; 49(1): 320-2, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21075160

ABSTRACT

4-Methylimidazole (4-MEI) is found in a wide array of food products. The National Toxicology Program (NTP) recently conducted a two-year feeding cancer bioassay of 4-MEI in B6C3F(1) mice and F344/N rats. In rats, NTP found "equivocal evidence of carcinogenic activity" in females based on increased incidences of mononuclear cell leukemia and "no evidence of carcinogenic activity" in males. However, dose-related, statistically significant decreases in multiple tumors were observed in both male and female rats exposed to 4-MEI in the NTP bioassay. For example, 4-MEI was associated with a 25-fold decrease in the incidence of mammary tumors among high dose females. NTP noted briefly that the decreases in certain tumors, including mammary tumors, were greater than could be attributed to body weight alone. The present paper provides a more detailed evaluation of the evidence that 4-MEI exhibits tumor preventive activity in the rat based upon the results of the NTP bioassay. Reduced body weight offers a partial explanation for the reduction in tumors, but does not appear to be the primary cause of the decreased tumor incidences, indicating that 4-MEI itself may possess an ability to prevent tumor formation.


Subject(s)
Anticarcinogenic Agents/pharmacology , Imidazoles/pharmacology , Neoplasms, Experimental/prevention & control , Animals , Body Weight/drug effects , Female , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL