Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 441
1.
Front Vet Sci ; 11: 1385642, 2024.
Article En | MEDLINE | ID: mdl-38803803

This study investigated the antioxidant effect of quercetin-treated semen on frozen-thawed spermatozoa quality and in-vivo fertility in crossbred Kamori goats. In total, 32 ejaculates from four fertile bucks were diluted in Tris-based egg yolk extender with varying levels of quercetin (0, 1, 5, 10, and 15 µM). Qualified semen samples were pooled and frozen in French straws. The results revealed that the addition of quercetin in the semen extender increased (p < 0.05) frozen-thawed sperm total motility (TM), progressive motility (PM), rapid velocity (RV), average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and amplitude of lateral head (ALH) displacement in contrast to the control group. Quercetin supplementation had no effect on beat cross frequency (BCF), straightness (STR), and linearity (LIN) (p > 0.05). Quercetin showed significantly higher (p < 0.05) plasma membrane and acrosome integrity and viability (p < 0.05) of spermatozoa in contrast to the control group. Quercetin in the semen extender significantly increased (p < 0.05) superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and total antioxidant capacity (TAC) levels while reduced (p < 0.05) the contents of total oxidant status (TOS) and malondialdehyde (MDA), which were in contrast to the control group. Ultrasound results revealed that 24 out of 30 (80%) goats were found pregnant when semen was treated with 5 µM quercetin while the control group showed 18 out of 30 (60%) animals were pregnant. Thus, the study concluded that 5 µM quercetin-treated semen was found to be efficient, showed increased antioxidant status, and reduced oxidant production, leading to improved spermatozoa quality and in-vivo fertility in goats.

2.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724950

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Charcoal , Droughts , Salt Stress , Solanum lycopersicum , Water , Solanum lycopersicum/physiology , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Charcoal/pharmacology , Water/metabolism , Agricultural Irrigation , Photosynthesis/drug effects
3.
Chemosphere ; 359: 142368, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763397

Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.


Charcoal , Metals, Heavy , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Metals, Heavy/chemistry , Water Purification/methods
4.
Sci Rep ; 14(1): 11469, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769392

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Biomass , Charcoal , Pyrolysis , Charcoal/chemistry , Phosphorus/chemistry , Phosphorus/analysis , Wood/chemistry , Hydrogen-Ion Concentration , Soil/chemistry , Temperature , Acacia/chemistry , Carbon/chemistry , Carbon/analysis
5.
Sci Rep ; 14(1): 7752, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565858

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Composting , Greenhouse Gases , Soil , Agriculture/methods , Triticum , Carbon , Charcoal , Sodium Chloride , Sodium Chloride, Dietary , Nitrous Oxide/analysis , Carbon Dioxide/analysis
6.
J Colloid Interface Sci ; 666: 639-647, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38615403

According to the Fresnel theory, the reflectivity intensity of spherical and cylindrical convex surfaces decreases from their edge to center, and it is noteworthy and interesting for optical gain to study the enhancement of center reflectance. In this paper, a polydimethylsiloxane (PDMS) - encapsulated cylindrical non-closed-packed photonic crystals (NPCs) composite with Bragg-enhanced Fresnel reflectance was designed for spectral selectivity and optical gain. Theoretically and experimentally, the periodically ordered structure of NPCs achieved high-reflection of light in photonic bandgap and high-transmission in other bands, which enhanced Fresnel reflectivity of the convex center to specific bands. Furtherly, the cylindrical NPCs hydrogel with stretchability was applied for the dynamic tuning of optical signals. The reflection peak of the PDMS-encapsulated cylindrical NPCs composite blue-shifted from 608 nm to 413 nm with 50 % tensile strain and achieved a rapid transition of structural color from orange to blue-violet in 60 cycles. The new kind of photonic crystals composite for optical gain and spectral selection broke through the limitations of traditional Fresnel curved mirrors with the lowest central reflectivity and inability to perform spectral selectivity, and have great significance and application prospects in fields of signal transmission, optical measurement, and instrument design.

7.
ACS Omega ; 9(14): 16334-16345, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38617612

The growing concerns about environmental pollution, particularly water pollution, are causing an increasing alarm in modern society. One promising approach to address this issue involves engineering existing materials to enhance their effectiveness. A one-step solvothermal reconstruction approach was used to build an eco-friendly two-dimensional (2D) AlNiZn-LDH/BDC MOF composite. The characterizations confirm the formation of a metal-organic framework (MOF) at the layered double hydroxide (LDH) surface. The resulting synthesized material, 2D AlNiZn-LDH/BDC MOF, demonstrated remarkable efficacy in decontaminating methylene blue (MB), a model cationic dye found in water systems. The removal performance of 2D AlNiZn-LDH/BDC MOF was significantly higher than that of pristine 2D AlNiZn-LDH. This improvement shows the potential to increase the adsorption capabilities of nanoporous LDH materials by incorporating organic ligands and integrating meso-/microporosity through MOF formation on their surfaces. Furthermore, their kinetic, isothermal, and thermodynamic studies elucidated the adsorption behavior of this composite material. The results of synthesized MOF showed excellent removal efficiency (92.27%) of 10 ppm of MB aqueous solution as compared to pristine LDH. Additionally, the as-synthesized adsorbent could be regenerated for six successive cycles. This method holds promise for the synthesis of novel and highly effective materials to combat water pollution, laying the groundwork for potential advancements in diverse applications.

8.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644487

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Amaranthus , Charcoal , Medicago sativa , Soil , Zea mays , Amaranthus/drug effects , Amaranthus/growth & development , Amaranthus/physiology , Zea mays/growth & development , Zea mays/drug effects , Zea mays/physiology , Medicago sativa/drug effects , Medicago sativa/growth & development , Medicago sativa/physiology , Soil/chemistry , Salinity , Plant Roots/growth & development , Plant Roots/drug effects , Photosynthesis/drug effects
9.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38671738

The flow and heat transfer of a steady, viscous biomagnetic fluid containing magnetic particles caused by the swirling and stretching motion of a three-dimensional cylinder has been investigated numerically in this study. Because fluid and particle rotation are different, a magnetic field is applied in both radial and tangential directions to counteract the effects of rotational viscosity in the flow domain. Partial differential equations are used to represent the governing three-dimensional modeled equations. With the aid of customary similarity transformations, this system of partial differential equations is transformed into a set of ordinary differential equations. They are then numerically resolved utilizing a common finite differences technique that includes iterative processing and the manipulation of tridiagonal matrices. Graphs are used to depict the physical effects of imperative parameters on the swirling velocity, temperature distributions, skin friction coefficient, and the rate of heat transfer. For higher values of the ferromagnetic interaction parameter, it is discovered that the axial velocity increases, whereas temperature and tangential velocity drop. With rising levels of the ferromagnetic interaction parameter, the size of the axial skin friction coefficient and the rate of heat transfer are both accelerated. In some limited circumstances, a comparison with previously published work is also handled and found to be acceptably accurate.

11.
ACS Omega ; 9(11): 12825-12834, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38524467

Current trends in localized drug delivery are emphasizing the development of dual drug-loaded electrospun nanofibers (NFs) for an improved therapeutic effect on wounds, especially infected skin wounds. The objective of this study was to formulate a new healing therapy for an infected skin wound. To achieve this goal, this study involved the development and characterization of poly(vinyl alcohol) (PVA)/chitosan nanofibers loaded with ciprofloxacin and rutin hydrate. Polymers and drugs were used in different ratios. Nanofiber morphology was studied by scanning electron microscopy, thermal stability by thermogravimetric analysis, structural determination by the X-ray diffraction method, and integrity by Fourier transform infrared spectroscopy. Dissolution studies were performed to check the drug release behavior of the formulations. Antibacterial studies were performed against Staphylococcus aureus and Pseudomonas aeruginosa. The wound healing efficiency of dual drug-loaded nanofibers was measured by a full-thickness excisional wound model of rabbits. The fabricated nanofibers were smooth in morphology. According to FTIR findings, the drugs remained intact in the nanofibers. The results of swelling ratio and porosity revealed that the pore size was increased as the amount of chitosan was increased up to 30% but a further increase in chitosan concentration reduced the swelling ratio and porosity. Drug release studies of nanofibers depicted an initial burst effect and afterward controlled drug release behavior. Drug-loaded nanofibers showed better activity against S. aureus than P. aeruginosa. The antibacterial efficacy of rutin hydrate with ciprofloxacin was improved compared to that of the formulation having rutin hydrate only, likely due to the additive effect in activity. Based on wound healing studies, nanofibrous membranes acted as a promising wound dressing material as compared to the commercial wound healing formulation. Drug-loaded polymeric nanofibers were successfully fabricated by using an electrospinning method. These nanofibers showed an efficient ability to deliver drugs and treat infected wounds.

12.
Front Cell Dev Biol ; 12: 1333845, 2024.
Article En | MEDLINE | ID: mdl-38469179

Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.

13.
Heliyon ; 10(4): e26396, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404828

Hybrid nanofluids (HNFs) of metallic oxide-based nanoparticles (NPs) have been prepared in different basefluids (BFs) employing the thermal plasma technique. NPs of ZnO-MgO were directly dispersed into pristine coolant, engine oil, distilled water (DW), and coconut oil. Plasma was generated between two identical electrodes applying 8.0 kV at the ambient conditions and proved economically viable in preparing stable HNFs. X-ray Diffractometry (XRD) showed ZnO and MgO NPs possessed hexagonal and cubic crystal structures, respectively. The band gap is calculated through UV-visible spectroscopy. The thermal conductivity (TC) of the HNFs has been measured using a thermal conductivity analyzer based on the transient hot wire method. The band gaps of pristine coolant and its HNFs were obtained to be 3.35 eV and 3.33 eV, respectively. In engine oil and its HNFs, band gaps of 3.16 eV and 3.02 eV have been extracted. There appears to be a slight reduction in band gap for coolant and engine oil-based HNFs. The band gap value of coconut oil-based HNFs was 4.05 eV, which showed a higher value than the pristine coconut oil-based HNFs (3.95 eV). The band gap calculated in the case of DW-based HNFs was 3.79 eV. TC of HNFs with volume concentration of 0.019 % for DW, 0.020 % for coolant, 0.016 % for engine oil, and 0.017 % for coconut oil were tested between 20 and 60 °C. An increase in TC was observed with the rise in temperature of the HNFs. Maximum increment in TC was observed at 60 °C for coolant-based HNFs, which was 19 %, followed by DW (18%), coconut oil (18%), and engine oil (16%), respectively. DW-based HNFs can be used as a coolant and optical filter for optoelectronics devices like photovoltaic cells for better performance. The study underscores precise control of NPs size as pivotal for band gap influence. HNFs hold promise as the next-gen heat transfer fluids (HTFs), revolutionizing thermal conductivity across industries. This research lays a firm foundation for plasma-synthesized HNFs' application in enhanced heat transfer and optoelectronic devices. Coolant-based HNFs excel in thermal conductivity, addressing heat transfer challenges.

14.
PLoS One ; 19(2): e0297467, 2024.
Article En | MEDLINE | ID: mdl-38394326

Glipizide, a poor water-soluble drug belongs to BCS class II. The proposed work aimed to enhance the solubility of glipizide by preparing solid dispersions, using polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Solvent evaporation method was used for the preparation of glipizide solid dispersions. Solid dispersions were prepared in four different drug-to-polymer ratios i.e. 1:1, 1:2, 1:3 and 1:4. Mainly effect of three polymers (PVP K30, PVP K90 and PEG 6000) was evaluated on the solubility and dissolution of glipizide. The in-vitro dissolution of all prepared formulations was performed under pH 6.8 at 37°C using USP type II apparatus. In-vitro dissolution results revealed that the formulations having high concentrations of the polymer showed enhanced solubility. Enhancements in the solubility and rate of dissolution of the drug were noted in solid dispersion formulations compared to the physical blends and pure drug. Solid dispersions containing polyvinyl pyrrolidone exhibited a more favorable pattern of drug release compared to the corresponding solid dispersions with PEG. An increase in the maximum solubility of the drug within the solid dispersion systems was observed in all instances. Two solid dispersion formulations were optimized and formulated into immediate-release tablets, which passed all the pharmacopoeial and non-pharmacopoeial tests. Fourier transformed Infrared (FTIR) spectroscopy X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to indicate drug: polymer interactions in solid state. Analysis of the solid dispersion samples through characterization tests indicated the compatibility between the drug and the polymer.


Glipizide , Polyvinyls , Solubility , Polymers/chemistry , Polyethylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Povidone/chemistry , X-Ray Diffraction , Calorimetry, Differential Scanning
15.
ACS Omega ; 9(6): 7003-7011, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38371835

This study aims to assess the anti-inflammatory potential of stearic acid nanoparticles of quercetin in an arthritic rat model. This article describes the fabrication of solid lipid nanoparticles (SLNs) using the hot melt encapsulation method, followed by the anti-inflammatory study of SLNs and other characterizations such as FTIR, XRD, and SEM. Thirty male healthy albino rats were taken and treated with FCA to induce rheumatoid arthritis. Quercetin loading of quercetin to stearic acid was confirmed by FTIR. The efficacy of quercetin-loaded SLNs to reduce inflammation was evaluated with the help of inflammatory biomarker levels. Quercetin-loaded stearic acid nanoparticles were successfully prepared by using a hot melt encapsulation method. Their average size and zeta potential were 100 nm and -25 mV, respectively. Rheumatoid arthritis was significantly (p < 0.001) reduced in the quercetin-loaded SLN group, as indicated by finding out the reduced levels of inflammatory mediators such as tumor necrosis factor (TNF-α) and rheumatoid factor. Quercetin-loaded stearic acid nanoparticles were found to be potentially effective in treating RA.

16.
Molecules ; 29(3)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38338472

Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.


Moringa , Animals , Rabbits , Moringa/metabolism , Amniotic Fluid/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing , Skin/metabolism
17.
PLoS One ; 19(2): e0291309, 2024.
Article En | MEDLINE | ID: mdl-38324592

This study investigates the impact of board governance mechanism on investment efficiency (IE) in PSX-listed firms. The study also examines the role of institutional ownership (IO) in board-IE relationships. In addition, we extend our analysis to re-examine this relationship by splitting the sample into two groups, i.e., the introductory phase of corporate governance (CG) i.e., 2004 to 2013, and revised codes of CG (2014 to 2018) to examine the impact of these separately on IE. The sample data comprises 155 non-financial PSX-listed firms from 2004 to 2018. IE is measured using firms' growth opportunities. The random effect model is used to test the study's hypotheses. A robustness test is also performed to validate the study's findings. The paired-sample t-test results show a significant improvement in IE after revising the CG codes in 2012. According to the regression results, board size has a significant direct, whereas board diversity has a significant inverse effect on IE. Regarding moderating effect, IO was found to moderate the relationship between board independence and IE significantly. Furthermore, it was discovered that following the issuance of revised CG codes-2012, the level of board independence and diversity increased in PSX-listed firms; however, only diversity positively impacted IE, and board independence had no impact on IE from 2014 to 2018. Despite the issuance of revised CG codes-2012, the level of CG among PSX-listed firms is low, which is a source of concern for regulators such as the Securities and Exchange Commission of Pakistan.


Health Facilities , Ownership , Investments , Pakistan
18.
ACS Appl Mater Interfaces ; 16(10): 13041-13051, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38417142

Real-time sensing and monitoring of temperature are of great significance for assessing human health. The sensitivity and stability are inevitable issues for thermometers. In this study, a thermometer with the cylindrical thermochromic hydrogel was prepared for real-time visual monitoring of temperature, which had excellent temperature sensitivity, angle-independence axially, and environmental stability. The customization of their initial optical properties depended on the PMMA concentrations and the content of the hydrogel monomer. The glycerol introduced with solvent displacement formed hydrogen bonds with the hydrogel network, which stabilized their mechanical properties, and the reflection peak blue-shifted from 653 to 499 nm when tensile strain was 57.85%. At the same time, the environmental stability originated from the moisturizing properties of the glycerol, which enabled the hydrogel to reliably transmit the information on temperature into the air without losing moisture. The reflection peak of the cylindrical thermochromic hydrogel shifted from 657 to 455 nm when the temperature increased from 22 to 45 °C, which realized temperature visual monitoring in the full-color range. The temperature sensitivity of the glycerol─nonclose-packed photonic crystals remained stable for 1 month, which provided an optimal option for continuous visual temperature monitoring.

19.
Sci Rep ; 14(1): 2505, 2024 01 30.
Article En | MEDLINE | ID: mdl-38291065

The current distribution of Asiatic black bear (Ursus thibetanus) is available on the IUCN Red List of Threatened species website; however, nothing is known about the historical extent and occurrence of this species. Therefore, we aimed to understand the historical distribution of the Asiatic black bear, and map and estimate its total size, to compare it with that of species current distribution. In addition, we analyzed a network of protected areas in the past and current ranges of the species. We employed geographic information system (GIS) software to reconstruct and measure the historical range of the Asiatic black bear, comparing past and current ranges to analyze its expected range contraction. The main focus of the study was to enhance our understanding of the species' historical distribution, contributing to better conservation strategies for the present and future perspectives. The utilization of GIS tools facilitates a comprehensive exploration of the factors influencing the species' decline, ultimately aiding in more effective management and conservation efforts. We used published records of black bear's occurrence in anywhere in history to reconstruct its historical distribution range. Results revealed that the Asiatic black bear was more widely distributed in historical times and its range spanned across approximately 15.86 million km2 while its current range is limited to approximately 7.85 million km2, showing a range contraction of approximately 49.5% (8.02 million km2 reduced). The total protected areas in the historical range of the species were found to be N = 9933, with total size of 0.946 million km2, against N = 6580 (0.667 million km2) that are present in the current range. Approximately 27.5% of the protected areas have lost the Asiatic black bear since historical times.


Ursidae , Animals , Endangered Species , Phylogeny
20.
J Pak Med Assoc ; 74(1): 16-20, 2024 Jan.
Article En | MEDLINE | ID: mdl-38219158

OBJECTIVE: To evaluate and compare merits between intensity modulated radiotherapy and volumetric modulated arc-therapy radiotherapy techniques to determine which technique can achieve better treatment plan quality and efficient delivery. METHODS: The retrospective study was conducted at the Radiation Oncology Department of SanBorotlo Hospital, Vicenza, Italy, in 2019, and comprised data from Jan 2019 to Dec 2019 related to prostate and head-and-neck patients in whom Pinnacle³ treatment planning system was used for optimisation with different prescribed doses and target geometries for intensity modulated radiotherapy and volumetric modulated arc-therapy techniques. Treatment plans were simulated using 6MV photon beam of SynergyS® Linac (Linear accelerator). The plan quality was evaluated using dose-volume indices for planning target-volume and organs-at-risk. ArcCHECK™ phantom was used for dose agreement verification between planed and delivered doses. RESULTS: Data of 8 patients was analysed. Intensity modulated radiotherapy and volumetric modulated arc-therapy treatment plan quality for prostate was found to be similar, but volumetric modulated arc-therapy had significant results for maximum dose (p=0.005). Intensity modulated radiotherapy and volumetric modulated arc-therapy plans for head-and-neck achieved adequate target coverage and sparing of organs at risk, and produced clinically acceptable treatment plans. The percentage of target coverage (p=0.001), dose maximum (p=0.013) and conformity index (p=0.000) were significant. A significant gain for all planning target volume dose-volume indices was noted (p<0.05). Volumetric modulated arc-therapy obtained better plan with significant values and improved sparing of organs at risk compared to intensity modulated radiotherapy for both prostate and head-and-neck treatments while maintaining doses to the organs at risk (p<0.05). CONCLUSIONS: Dynamic arc mode of beam delivery provided increased degrees of freedom of volumetric modulated arc-therapy beam intensity modulation, depicting superior dose distribution than intensity modulated radiotherapy.


Head and Neck Neoplasms , Radiation Oncology , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Prostate/diagnostic imaging , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage
...