Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Food Sci Nutr ; 11(5): 2106-2117, 2023 May.
Article En | MEDLINE | ID: mdl-37181311

This study aimed to characterize the metabolic composition of four types of commercially available chicken breeds [village chicken, colored broiler (Hubbard), broiler (Cobb), and spent layers (Dekalb)] by 1H NMR coupling and discriminate them using multivariate analysis. Five chickens were collected for each chicken breed based on the marketing age from the respective commercial farms. The orthogonal partial least squares discriminant analysis (OPLS-DA) results showed an obvious separation of local village chickens from the other breeds based on the metabolites present in their serum and meat (pectoralis major). The cumulative values of Q 2, R 2 X, and R 2 Y of the OPLS-DA model for chicken serum were 0.722, 0.877, and 0.841. For the pectoralis major muscle, the cumulative values of Q 2, R 2 X, and R 2 Y of the OPLS-DA model were reported as 0.684, 0.781, and 0.786, respectively. The quality of both OPLS-DA models was accepted by the cumulative values of Q 2 ≥ 0.5 and R 2 ≥ 0.65. The 1H NMR result with multivariate analysis has successfully distinguished local village chicken from the other three commercial chicken breeds based on serum and pectoralis major muscle. Nonetheless, colored broiler (Hubbard) was not distinguished from broiler (Cobb) and spent layers (Dekalb) in serum and pectoralis major, respectively. The OPLS-DA assessment in this study identified 19 and 15 potential metabolites for discriminating different chicken breeds in serum and pectoralis major muscle, respectively. Some of the prominent metabolites identified include amino acids (betaine, glycine, glutamine, guanidoacetate, phenylalanine, and valine), nucleotides (IMP and NAD+), organic acids (lactate, malate, and succinate), peptide (anserine), and sugar alcohol (myo-inositol).

2.
Molecules ; 26(24)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34946647

The authentication of food products is essential for food quality and safety. Authenticity assessments are important to ensure that the ingredients or contents of food products are legitimate and safe to consume. The metabolomics approach is an essential technique that can be utilized for authentication purposes. This study aimed to summarize food authentication through the metabolomics approach, to study the existing analytical methods, instruments, and statistical methods applied in food authentication, and to review some selected food commodities authenticated using metabolomics-based methods. Various databases, including Google Scholar, PubMed, Scopus, etc., were used to obtain previous research works relevant to the objectives. The review highlights the role of the metabolomics approach in food authenticity. The approach is technically implemented to ensure consumer protection through the strict inspection and enforcement of food labeling. Studies have shown that the study of metabolomics can ultimately detect adulterant(s) or ingredients that are added deliberately, thus compromising the authenticity or quality of food products. Overall, this review will provide information on the usefulness of metabolomics and the techniques associated with it in successful food authentication processes, which is currently a gap in research that can be further explored and improved.


Food Analysis , Food Handling , Food Quality , Food , Metabolomics
3.
Plants (Basel) ; 10(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34961220

Ficus is one of the largest genera in the plant kingdom that belongs to the Moraceae family. This review aimed to summarize the medicinal uses, phytochemistry, and pharmacological actions of two major species from this genus, namely Ficus benghalensis and Ficus religiosa. These species can be found abundantly in most Asian countries, including Malaysia. The chemical analysis report has shown that Ficus species contained a wide range of phytoconstituents, including phenols, flavonoids, alkaloids, tannins, saponins, terpenoids, glycosides, sugar, protein, essential and volatile oils, and steroids. Existing studies on the pharmacological functions have revealed that the observed Ficus species possessed a broad range of biological properties, including antioxidants, antidiabetic, anti-inflammatory, anticancer, antitumor and antiproliferative, antimutagenic, antimicrobial, anti-helminthic, hepatoprotective, wound healing, anticoagulant, immunomodulatory activities, antistress, toxicity studies, and mosquitocidal effects. Apart from the plant parts and their extracts, the endophytes residing in these host plants were discussed as well. This study also includes the recent applications of the Ficus species and their plant parts, mainly in the nanotechnology field. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PMC, Research Gate, and Scopus. Overall, the review discusses the therapeutic potentials discovered in recent times and highlights the research gaps for prospective research work.

4.
Foods ; 10(9)2021 Sep 14.
Article En | MEDLINE | ID: mdl-34574284

Globally, village chicken is popular and is known as a premium meat with a higher price. Food fraud can occur by selling other chicken breeds at a premium price in local markets. This study aimed to distinguish local village chicken from other chicken breeds available in the market, namely, colored broiler (Hubbard), broiler (Cobb), and spent laying hen (Dekalb) in pectoralis major and serum under commercial conditions using an untargeted metabolomics approach. Both pectoralis major and serum were analyzed using gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) results distinguished four different chicken breeds into three main groups for pectoralis major and serum. A total of 30 and 40 characteristic metabolites were identified for pectoralis major and serum, respectively. The four chicken breeds were characterized by the abundance of metabolites such as amino acids (L-glutamic acid, L-threonine, L-serine, L-leucine), organic acids (L-lactic acid, succinic acid, 3-hydroxybutyric acid), sugars (D-allose, D-glucose), sugar alcohols (myo-inositol), and fatty acids (linoleic acid). Our results suggest that an untargeted metabolomics approach using GC-MS and PCA could discriminate chicken breeds for pectoralis major and serum under commercial conditions. In this study, village chicken could only be distinguished from colored broiler (Hubbard) by serum samples.

5.
Food Chem (Oxf) ; 2: 100012, 2021 Jul 30.
Article En | MEDLINE | ID: mdl-35415640

Momordica charantia fruit is claimed to have healthy benefit. Despite this potential claim, the phytochemical study of this fruit is still lacking. Thus, this study aimed to evaluate the antioxidants profile of Momordica charantia (Cucurbitaceae) fruit. The antioxidant activity of the ethanolic extracts of various polarities was evaluated and the metabolites that are responsible for its activity were identified using metabolomics approach. Six different mixture of ethanol in water that are 0%, 20%, 40%, 60%, 80%, and 100% (v/v) was extracted using dveseeded fruit sample. Liquid chromatography-mass spectrometry-quadrupole time of flight and multivariate data analysis was used to identify the metabolites that were either antioxidants or pro-oxidants. The 80% ethanol extract exhibited the most antioxidant activity when tested in both 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) antioxidant assays. This extract showed the most intense LC-MS signals represented to ascorbic acid, margarolic acid, brevifolincarboxylic acid, quercetin 3-O-glycoside, kuguacin H, cucurbitacin E, 3-malonylmomordicin I, and goyaglycoside G correlating to the anti-oxidant activity. This study reports for the first time the existence of brevifolincarboxylic acid in this fruit, and the antioxidant activity of 3-malonylmomordicin I and goyaglycoside G. In addition, the loading plots revealed the unknown compounds possessing the antioxidant activity which are potential to be isolated in the future study.

6.
Nat Prod Res ; 34(9): 1341-1344, 2020 May.
Article En | MEDLINE | ID: mdl-30678487

Different extraction processes were employed to extract bioactive metabolites from Salacca zalacca flesh by a range of aqueous and organic solvents. The highest extraction yield was obtained by 50% ethanol extract of SE (73.18 ± 4.35%), whereas SFE_1 showed the lowest yield (0.42 ± 0.08%). All extracts were evaluated for in vitro α-glucosidase inhibitory activity, measured by their IC50 values in comparison to that of quercetin, the positive control (IC50 = 2.7 ± 0.7 µg/mL). The lowest α-glucosidase inhibitory activity was indicated by water extract of SE (IC50 = 724.3 ± 42.9 µg/mL) and the highest activity was demonstrated by 60% ethanol extract by UAE (IC50 = 16.2 ± 2.4 µg/mL). All extracts were analysed by GC-MS and identified metabolites like carbohydrates, fatty acids, organic acids, phenolic acids, sterols and alkane-based compounds etcetera that may possess the potential as α-glucosidase inhibitor and may attribute to the α-glucosidase inhibitory activity.


Arecaceae/metabolism , Chemical Fractionation/methods , Glycoside Hydrolase Inhibitors/pharmacology , Arecaceae/chemistry , Chromatography, Supercritical Fluid , Ethanol/chemistry , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Solvents/chemistry , Ultrasonics
7.
J Pharm Anal ; 9(2): 91-99, 2019 Apr.
Article En | MEDLINE | ID: mdl-31011465

The present study used in vitro and in silico techniques, as well as the metabolomics approach to characterise α-glucosidase inhibitors from different fractions of Clinacanthus nutans. C. nutans is a medicinal plant belonging to the Acanthaceae family, and is traditionally used to treat diabetes in Malaysia. n-Hexane, n-hexane: ethyl acetate (1:1, v/v), ethyl acetate, ethyl acetate: methanol (1:1, v/v), and methanol fractions were obtained via partitioning of the 80% methanolic crude extract. The in vitro α-glucosidase inhibitory activity was analyzed using all the fractions collected, followed by profiling of the metabolites using liquid chromatography combined with mass spectrometry. The partial least square (PLS) statistical model was developed using the SIMCA P+14.0 software and the following four inhibitors were obtained: (1) 4,6,8-Megastigmatrien-3-one; (2) N-Isobutyl-2-nonen-6,8-diynamide; (3) 1',2'-bis(acetyloxy)-3',4'-didehydro-2'-hydro-ß, ψ-carotene; and (4) 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. The in silico study performed via molecular docking with the crystal structure of yeast isomaltase (PDB code: 3A4A) involved a hydrogen bond and some hydrophobic interactions between the inhibitors and protein. The residues that interacted include ASN259, HID295, LYS156, ARG335, and GLY209 with a hydrogen bond, while TRP15, TYR158, VAL232, HIE280, ALA292, PRO312, LEU313, VAL313, PHE314, ARG315, TYR316, VAL319, and TRP343 with other forms of bonding.

8.
Toxicol Rep ; 6: 1148-1154, 2019.
Article En | MEDLINE | ID: mdl-31993329

Clinacanthus nutans, an herbal shrub belonging to the Acanthaceae family, is traditionally used as a functional food to treat various ailments in Malaysia and Indonesia. Although the polar fraction of this plant shows non-toxic effect, the toxicity of the non-polar extract is not reported so far. The present study aimed to assess the toxic effect and determine the lethal concentration of this non-polar fraction using zebrafish embryos. The n-hexane fraction was partitioned from the crude extract of C. nutans obtained using 80% methanolic solution. After spawning of the adult male and female zebrafish, the eggs were collected, transferred into a 96-well plate and incubated with the n-hexane fraction at concentrations of 15.63 µg/ml, 31.25 µg/ml, 62.5 µg/ml, 125 µg/ml, 250 µg/ml and 500 µg/ml in 2% DMSO. The survival and sublethal endpoint were assessed, the mortality and hatchability rates were calculated based on microscopic observation, while the heartbeat rate was measured using DanioScope software. The median lethal concentration (LC50) of the C. nutans n-hexane fraction, which was determined using probit analysis, was calculated to be 75.49 µg/mL, which is harmful. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of palmitic acid, phytol, hexadecanoic acid, 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol and stigmasterol in the n-hexane fraction.

9.
Article Zh | WPRIM | ID: wpr-744113

The present study used in vitro and in silico techniques, as well as the metabolomics approach to char-acterise α-glucosidase inhibitors from different fractions of Clinacanthus nutans. C. nutans is a medicinal plant belonging to the Acanthaceae family, and is traditionally used to treat diabetes in Malaysia. n-Hexane, n-hexane: ethyl acetate (1:1, v/v), ethyl acetate, ethyl acetate: methanol (1:1, v/v), and methanol fractions were obtained via partitioning of the 80% methanolic crude extract. The in vitro α-glucosidase inhibitory activity was analyzed using all the fractions collected, followed by profiling of the metabolites using liquid chromatography combined with mass spectrometry. The partial least square (PLS) statistical model was developed using the SIMCA P +14.0 software and the following four inhibitors were obtained:(1) 4,6,8-Megastigmatrien-3-one; (2) N-Isobutyl-2-nonen-6,8-diynamide; (3) 1′,2′-bis(acetyloxy)-3′,4′-didehydro-2′-hydro-β, ψ-carotene; and (4) 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. The in silico study performed via molecular docking with the crystal structure of yeast isomaltase (PDB code: 3A4A) involved a hydrogen bond and some hydrophobic interactions be-tween the inhibitors and protein. The residues that interacted include ASN259, HID295, LYS156, ARG335, and GLY209 with a hydrogen bond, while TRP15, TYR158, VAL232, HIE280, ALA292, PRO312, LEU313, VAL313, PHE314, ARG315, TYR316, VAL319, and TRP343 with other forms of bonding.

10.
Molecules ; 23(9)2018 Sep 19.
Article En | MEDLINE | ID: mdl-30235889

BACKGROUND: Clinacanthus nutans (C. nutans) is an Acanthaceae herbal shrub traditionally consumed to treat various diseases including diabetes in Malaysia. This study was designed to evaluate the α-glucosidase inhibitory activity of C. nutans leaves extracts, and to identify the metabolites responsible for the bioactivity. METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS). RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding. CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.


Acanthaceae/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , Diabetes Mellitus/drug therapy , Gas Chromatography-Mass Spectrometry , Hyperglycemia/drug therapy , Metabolomics , Molecular Docking Simulation , Oligo-1,6-Glucosidase/chemistry , Saccharomyces cerevisiae/enzymology
11.
Biomed Res Int ; 2017: 8386065, 2017.
Article En | MEDLINE | ID: mdl-29318154

The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.


Flavonoids/chemistry , Free Radical Scavengers/chemistry , Hypoglycemic Agents/chemistry , Structure-Activity Relationship
...