Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798464

ABSTRACT

The capacity for embryonic cells to differentiate relies on a large-scale reprogramming of the oocyte and sperm nucleus into a transient totipotent state. In zebrafish, this reprogramming step is achieved by the pioneer factors Nanog, Pou5f3, and Sox19b (NPS). Yet, it remains unclear whether cells lacking this reprogramming step are directed towards wild type states or towards novel developmental canals in the Waddington landscape of embryonic development. Here we investigate the developmental fate of embryonic cells mutant for NPS by analyzing their single-cell gene expression profiles. We find that cells lacking the first developmental reprogramming steps can acquire distinct cell states. These states are manifested by gene expression modules that result from a failure of nuclear reprogramming, the persistence of the maternal program, and the activation of somatic compensatory programs. As a result, most mutant cells follow new developmental canals and acquire new mixed cell states in development. In contrast, a group of mutant cells acquire primordial germ cell-like states, suggesting that NPS-dependent reprogramming is dispensable for these cell states. Together, these results demonstrate that developmental reprogramming after fertilization is required to differentiate most canonical developmental programs, and loss of the transient totipotent state canalizes embryonic cells into new developmental states in vivo.

2.
Cell Rep ; 43(4): 114074, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625794

ABSTRACT

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).


Subject(s)
RNA Helicases , RNA Stability , Trans-Activators , Humans , 3' Untranslated Regions/genetics , Nonsense Mediated mRNA Decay , Open Reading Frames/genetics , Protein Biosynthesis , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , HEK293 Cells
3.
Nat Commun ; 11(1): 6087, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257696

ABSTRACT

Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1-/- induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


Subject(s)
Cerebellar Diseases/metabolism , Chelating Agents/metabolism , Cytoplasm/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phytic Acid/metabolism , Animals , Cell Death , Cell Differentiation , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/pathology , Child , Child, Preschool , Female , Gene Knockout Techniques , HEK293 Cells , Homeostasis , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neurodevelopmental Disorders/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/pharmacology , Phosphorylation , Stem Cells/drug effects , Transcriptome
4.
Brain ; 143(4): 1114-1126, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32293671

ABSTRACT

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Subject(s)
Apolipoprotein C-III/blood , Developmental Disabilities/genetics , N-Acetylgalactosaminyltransferases/genetics , Adolescent , Animals , Apolipoprotein C-III/genetics , Child , Child, Preschool , Female , Glycosylation , Humans , Loss of Function Mutation , Male , Mice , Pedigree , Rats , Young Adult , Polypeptide N-acetylgalactosaminyltransferase
5.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220290

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Subject(s)
Acyltransferases/genetics , Cell Adhesion Molecules/genetics , Cerebellar Diseases/genetics , Epilepsy/genetics , Genetic Variation/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Alleles , Female , Humans , Intellectual Disability/genetics , Male , Nervous System Malformations/genetics , Pedigree , Syndrome
6.
Genet Med ; 22(6): 1040-1050, 2020 06.
Article in English | MEDLINE | ID: mdl-32103185

ABSTRACT

PURPOSE: The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS: We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS: We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION: Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.


Subject(s)
Brain Diseases , Microcephaly , Animals , Cell Proliferation/genetics , Homozygote , Humans , Mice , Microcephaly/genetics , Zebrafish/genetics
7.
Nat Med ; 26(1): 143-150, 2020 01.
Article in English | MEDLINE | ID: mdl-31873310

ABSTRACT

De novo mutations arising on the paternal chromosome make the largest known contribution to autism risk, and correlate with paternal age at the time of conception. The recurrence risk for autism spectrum disorders is substantial, leading many families to decline future pregnancies, but the potential impact of assessing parental gonadal mosaicism has not been considered. We measured sperm mosaicism using deep-whole-genome sequencing, for variants both present in an offspring and evident only in father's sperm, and identified single-nucleotide, structural and short tandem-repeat variants. We found that mosaicism quantification can stratify autism spectrum disorders recurrence risk due to de novo mutations into a vast majority with near 0% recurrence and a small fraction with a substantially higher and quantifiable risk, and we identify novel mosaic variants at risk for transmission to a future offspring. This suggests, therefore, that genetic counseling would benefit from the addition of sperm mosaicism assessment.


Subject(s)
Autistic Disorder/genetics , Genetic Predisposition to Disease , Mosaicism , Spermatozoa/metabolism , Autistic Disorder/blood , Female , Humans , Male , Mutation/genetics , Pedigree , Polymorphism, Single Nucleotide/genetics , Recurrence , Risk Factors
8.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31495489

ABSTRACT

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Subject(s)
Arthrogryposis/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Sphingomyelin Phosphodiesterase/genetics , Arthrogryposis/pathology , Cell Lineage , Child , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Microcephaly/pathology , Mitosis , Neurodevelopmental Disorders/pathology , Pedigree , RNA Splicing
9.
Brain ; 142(10): 2965-2978, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31412107

ABSTRACT

Basal ganglia are subcortical grey nuclei that play essential roles in controlling voluntary movements, cognition and emotion. While basal ganglia dysfunction is observed in many neurodegenerative or metabolic disorders, congenital malformations are rare. In particular, dysplastic basal ganglia are part of the malformative spectrum of tubulinopathies and X-linked lissencephaly with abnormal genitalia, but neurodevelopmental syndromes characterized by basal ganglia agenesis are not known to date. We ascertained two unrelated children (both female) presenting with spastic tetraparesis, severe generalized dystonia and intellectual impairment, sharing a unique brain malformation characterized by agenesis of putamina and globi pallidi, dysgenesis of the caudate nuclei, olfactory bulbs hypoplasia, and anomaly of the diencephalic-mesencephalic junction with abnormal corticospinal tract course. Whole-exome sequencing identified two novel homozygous variants, c.26C>A; p.(S9*) and c.752A>G; p.(Q251R) in the GSX2 gene, a member of the family of homeobox transcription factors, which are key regulators of embryonic development. GSX2 is highly expressed in neural progenitors of the lateral and median ganglionic eminences, two protrusions of the ventral telencephalon from which the basal ganglia and olfactory tubercles originate, where it promotes neurogenesis while negatively regulating oligodendrogenesis. The truncating variant resulted in complete loss of protein expression, while the missense variant affected a highly conserved residue of the homeobox domain, was consistently predicted as pathogenic by bioinformatic tools, resulted in reduced protein expression and caused impaired structural stability of the homeobox domain and weaker interaction with DNA according to molecular dynamic simulations. Moreover, the nuclear localization of the mutant protein in transfected cells was significantly reduced compared to the wild-type protein. Expression studies on both patients' fibroblasts demonstrated reduced expression of GSX2 itself, likely due to altered transcriptional self-regulation, as well as significant expression changes of related genes such as ASCL1 and PAX6. Whole transcriptome analysis revealed a global deregulation in genes implicated in apoptosis and immunity, two broad pathways known to be involved in brain development. This is the first report of the clinical phenotype and molecular basis associated to basal ganglia agenesis in humans.


Subject(s)
Globus Pallidus/growth & development , Homeodomain Proteins/genetics , Putamen/growth & development , Adolescent , Adult , Basal Ganglia/growth & development , Basal Ganglia/metabolism , Basal Ganglia/physiopathology , Cell Differentiation/genetics , Child, Preschool , Embryo, Mammalian/metabolism , Female , Globus Pallidus/metabolism , Globus Pallidus/physiopathology , Homeodomain Proteins/metabolism , Humans , Male , Mutation , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , Putamen/metabolism , Putamen/physiopathology , Telencephalon , Transcription Factors/genetics , Exome Sequencing/methods
10.
Dev Cell ; 49(6): 867-881.e8, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31211993

ABSTRACT

The awakening of the genome after fertilization is a cornerstone of animal development. However, the mechanisms that activate the silent genome after fertilization are poorly understood. Here, we show that transcriptional competency is regulated by Brd4- and P300-dependent histone acetylation in zebrafish. Live imaging of transcription revealed that genome activation, beginning at the miR-430 locus, is gradual and stochastic. We show that genome activation does not require slowdown of the cell cycle and is regulated through the translation of maternally inherited mRNAs. Among these, the enhancer regulators P300 and Brd4 can prematurely activate transcription and restore transcriptional competency when maternal mRNA translation is blocked, whereas inhibition of histone acetylation blocks genome activation. We conclude that P300 and Brd4 are sufficient to trigger genome-wide transcriptional competency by regulating histone acetylation on the first zygotic genes in zebrafish. This mechanism is critical for initiating zygotic development and developmental reprogramming.


Subject(s)
Embryo, Nonmammalian/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Genome , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zygote/metabolism , Animals , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Embryo, Nonmammalian/cytology , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Transcriptome , Zebrafish Proteins/genetics , Zygote/cytology
11.
Genome Res ; 29(7): 1100-1114, 2019 07.
Article in English | MEDLINE | ID: mdl-31227602

ABSTRACT

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation, Developmental , RNA Stability/genetics , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Animals , Binding Sites , Machine Learning , Models, Genetic , Regulatory Sequences, Ribonucleic Acid , Zebrafish/embryology , Zebrafish/genetics , Zygote
12.
Am J Hum Genet ; 104(4): 731-737, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905400

ABSTRACT

Ciliopathies are clinical disorders of the primary cilium with widely recognized phenotypic and genetic heterogeneity. In two Arab consanguineous families, we mapped a ciliopathy phenotype that most closely matches Joubert syndrome (hypotonia, developmental delay, typical facies, oculomotor apraxia, polydactyly, and subtle posterior fossa abnormalities) to a single locus in which a founder homozygous truncating variant in FAM149B1 was identified by exome sequencing. We subsequently identified a third Arab consanguineous multiplex family in which the phenotype of Joubert syndrome/oral-facial-digital syndrome (OFD VI) was found to co-segregate with the same founder variant in FAM149B1. Independently, autozygosity mapping and exome sequencing in a consanguineous Turkish family with Joubert syndrome highlighted a different homozygous truncating variant in the same gene. FAM149B1 encodes a protein of unknown function. Mutant fibroblasts were found to have normal ciliogenesis potential. However, distinct cilia-related abnormalities were observed in these cells: abnormal accumulation IFT complex at the distal tips of the cilia, which assumed bulbous appearance, increased length of the primary cilium, and dysregulated SHH signaling. We conclude that FAM149B1 is required for normal ciliary biology and that its deficiency results in a range of ciliopathy phenotypes in humans along the spectrum of Joubert syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Cilia/pathology , Ciliopathies/diagnosis , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Mutation , Retina/abnormalities , Adolescent , Alleles , Child, Preschool , Cilia/genetics , Consanguinity , Exome , Genes, Recessive , Homozygote , Humans , Male , Nervous System Malformations/genetics , Orofaciodigital Syndromes/genetics , Phenotype , Sequence Analysis, DNA , Signal Transduction , Turkey
13.
Nat Commun ; 10(1): 707, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755602

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes.


Subject(s)
Epilepsy/genetics , Mutation , Valine-tRNA Ligase/genetics , Alleles , Anticodon , Child , Child, Preschool , Disease Progression , Epilepsy/enzymology , Epilepsy/pathology , Female , Genetic Predisposition to Disease , Humans , Longitudinal Studies , Loss of Function Mutation , Male , Microcephaly/enzymology , Microcephaly/genetics , Models, Molecular , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Protein Biosynthesis , Protein Interaction Domains and Motifs , RNA, Transfer/genetics , Exome Sequencing , Whole Genome Sequencing
14.
J Clin Invest ; 129(3): 1240-1256, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30620337

ABSTRACT

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.


Subject(s)
Animals, Genetically Modified , Brain , Fingolimod Hydrochloride/pharmacology , Hereditary Central Nervous System Demyelinating Diseases , Zebrafish Proteins , Zebrafish , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Brain/enzymology , Brain/pathology , Disease Models, Animal , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/drug therapy , Hereditary Central Nervous System Demyelinating Diseases/enzymology , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Locomotion/drug effects , Oligodendroglia/enzymology , Oligodendroglia/pathology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
15.
EMBO J ; 37(23)2018 12 03.
Article in English | MEDLINE | ID: mdl-30420557

ABSTRACT

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Subject(s)
Carboxypeptidases/deficiency , Cerebellum/enzymology , Motor Neurons/enzymology , Peripheral Nerves/enzymology , Purkinje Cells/enzymology , Spine/enzymology , Spinocerebellar Degenerations/enzymology , Cerebellum/pathology , Female , GTP-Binding Proteins , Humans , Male , Motor Neurons/pathology , Peptides/genetics , Peptides/metabolism , Peripheral Nerves/pathology , Protein Processing, Post-Translational , Purkinje Cells/pathology , Serine-Type D-Ala-D-Ala Carboxypeptidase , Spine/pathology , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology
16.
Ann Neurol ; 84(5): 638-647, 2018 11.
Article in English | MEDLINE | ID: mdl-30178464

ABSTRACT

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Subject(s)
Brain Stem/abnormalities , Cadherins/genetics , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Protocadherins
17.
Am J Hum Genet ; 103(2): 296-304, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30032983

ABSTRACT

The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum.


Subject(s)
Endoplasmic Reticulum/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Adolescent , Animals , Atrophy/genetics , Cell Differentiation/genetics , Child , Corpus Callosum/pathology , Female , Humans , Infant , Intellectual Disability/genetics , Male , Membrane Proteins , Mice , Muscle Hypotonia/genetics , Phenotype , Psychomotor Disorders/genetics , Stem Cells/pathology
18.
Nat Genet ; 50(8): 1093-1101, 2018 08.
Article in English | MEDLINE | ID: mdl-30013181

ABSTRACT

Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between ß-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect ß-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.


Subject(s)
Actin-Related Protein 2-3 Complex/genetics , Cell Movement/genetics , Cerebral Cortex/physiology , Neurons/pathology , alpha Catenin/genetics , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Embryo, Mammalian , Genome, Human , Humans , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/genetics , Neurons/metabolism , Pedigree , alpha Catenin/metabolism
19.
Eur J Hum Genet ; 26(3): 330-339, 2018 03.
Article in English | MEDLINE | ID: mdl-29343805

ABSTRACT

Kinesin proteins are critical for various cellular functions such as intracellular transport and cell division, and many members of the family have been linked to monogenic disorders and cancer. We report eight individuals with intellectual disability and microcephaly from four unrelated families with parental consanguinity. In the affected individuals of each family, homozygosity for likely pathogenic variants in KIF14 were detected; two loss-of-function (p.Asn83Ilefs*3 and p.Ser1478fs), and two missense substitutions (p.Ser841Phe and p.Gly459Arg). KIF14 is a mitotic motor protein that is required for spindle localization of the mitotic citron rho-interacting kinase, CIT, also mutated in microcephaly. Our results demonstrate the involvement of KIF14 in development and reveal a wide phenotypic variability ranging from fetal lethality to moderate developmental delay and microcephaly.


Subject(s)
Intellectual Disability/genetics , Kinesins/genetics , Microcephaly/genetics , Oncogene Proteins/genetics , Child , Child, Preschool , Female , Humans , Intellectual Disability/pathology , Kinesins/chemistry , Kinesins/metabolism , Loss of Function Mutation , Microcephaly/pathology , Mutation, Missense , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Pedigree , Phenotype , Protein Domains , Syndrome
20.
J Med Genet ; 55(1): 48-54, 2018 01.
Article in English | MEDLINE | ID: mdl-28626029

ABSTRACT

BACKGROUND: Transport protein particle (TRAPP) is a multisubunit complex that regulates membrane trafficking through the Golgi apparatus. The clinical phenotype associated with mutations in various TRAPP subunits has allowed elucidation of their functions in specific tissues. The role of some subunits in human disease, however, has not been fully established, and their functions remain uncertain. OBJECTIVE: We aimed to expand the range of neurodevelopmental disorders associated with mutations in TRAPP subunits by exome sequencing of consanguineous families. METHODS: Linkage and homozygosity mapping and candidate gene analysis were used to identify homozygous mutations in families. Patient fibroblasts were used to study splicing defect and zebrafish to model the disease. RESULTS: We identified six individuals from three unrelated families with a founder homozygous splice mutation in TRAPPC6B, encoding a core subunit of the complex TRAPP I. Patients manifested a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features, and showed splicing defect. Zebrafish trappc6b morphants replicated the human phenotype, displaying decreased head size and neuronal hyperexcitability, leading to a lower seizure threshold. CONCLUSION: This study provides clinical and functional evidence of the role of TRAPPC6B in brain development and function.


Subject(s)
Autistic Disorder/genetics , Epilepsy/genetics , Founder Effect , Genetic Association Studies , Microcephaly/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Animals , Autistic Disorder/complications , Epilepsy/complications , Homozygote , Humans , Microcephaly/complications , Phenotype , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL