Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Article En | MEDLINE | ID: mdl-38747199

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Cyclonic Storms , Forests , Trees , Tropical Climate , Wind , Trees/growth & development , Bayes Theorem
2.
J Biogeogr ; 51(4): 560-574, 2024 Apr.
Article En | MEDLINE | ID: mdl-38596256

AIM: Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range-wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity. LOCATION: Global. TAXON: Arabidopsis thaliana ("Arabidopsis"). METHODS: We fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current, and future climates. We confronted model predictions with individual performance measured on 2,194 herbarium specimens, and we asked whether predicted suitability was associated with life-history and genomic variation measured on ~900 natural accessions. RESULTS: The most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late-flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the center of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well-predicted by our native-range model applied to certain regions but not others, suggesting it has colonized novel climates. MAIN CONCLUSIONS: Integration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.

3.
Ecol Evol ; 14(3): e11095, 2024 Mar.
Article En | MEDLINE | ID: mdl-38505185

Droughts are predicted to become more frequent and intense in many tropical regions, which may cause shifts in plant community composition. Especially in diverse tropical communities, understanding how traits mediate demographic responses to drought can help provide insight into the effects of climate change on these ecosystems. To understand tropical tree responses to reduced soil moisture, we grew seedlings of eight species across an experimental soil moisture gradient at the Luquillo Experimental Forest, Puerto Rico. We quantified survival and growth over an 8-month period and characterized demographic responses in terms of tolerance to low soil moisture-defined as survival and growth rates under low soil moisture conditions-and sensitivity to variation in soil moisture-defined as more pronounced changes in demographic rates across the observed range of soil moisture. We then compared demographic responses with interspecific variation in a suite of 11 (root, stem, and leaf) functional traits, measured on individuals that survived the experiment. Lower soil moisture was associated with reduced survival and growth but traits mediated species-specific responses. Species with relatively conservative traits (e.g., high leaf mass per area), had higher survival at low soil moisture whereas species with more extensive root systems were more sensitive to soil moisture, in that they exhibited more pronounced changes in growth across the experimental soil moisture gradient. Our results suggest that increasing drought will favor species with more conservative traits that confer greater survival in low soil moisture conditions.

4.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Article En | MEDLINE | ID: mdl-37807917

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Ecosystem , Trees , Tropical Climate , Forests , Wood , Droughts , Plant Leaves , Xylem
5.
Ecol Evol ; 13(8): e10406, 2023 Aug.
Article En | MEDLINE | ID: mdl-37560182

The link between biodiversity and ecosystem function can depend on environmental conditions. This contingency can impede our ability to predict how biodiversity-ecosystem function (BEF) relationships will respond to future environmental change, causing a clear need to explore the processes underlying shifts in BEF relationships across large spatial scales and broad environmental gradients. We compiled a dataset on five functional traits (maximum height, wood density, specific leaf area [SLA], seed size, and xylem vulnerability to embolism [P50]), covering 78%-90% of the tree species in the National Forest Inventory from Italy, to test (i) how a water limitation gradient shapes the functional composition and diversity of forests, (ii) how functional composition and diversity of trees relate to forest annual increment via mass ratio and complementarity effects, and (iii) how the relationship between functional diversity and annual increment varies between Mediterranean and temperate climate regions. Functional composition varied with water limitation; tree communities tended to have more conservative traits in sites with higher levels of water limitation. The response of functional diversity differed among traits and climatic regions but among temperate forest plots, we found a consistent increase of functional diversity with water limitation. Tree diversity was positively associated with annual increment of Italian forests through a combination of mass ratio and niche complementarity effects, but the relative importance of these effects depended on the trait and range of climate considered. Specifically, niche complementarity effects were more strongly associated with annual increment in the Mediterranean compared to temperate forests. Synthesis: Overall, our results suggest that biodiversity mediates forest annual increment under water-limited conditions by promoting beneficial interactions between species and complementarity in resource use. Our work highlights the importance of conserving functional diversity for future forest management to maintain forest annual increment under the expected increase in intensity and frequency of drought.

7.
New Phytol ; 235(3): 1005-1017, 2022 08.
Article En | MEDLINE | ID: mdl-35608089

Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate. We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes. Species with high resistance to embolisms (low P50 values) and higher safety margins ( SMP50 ) were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post-hurricane growth) had high capacitance and P50 values and low SMP50 . During 26 yr of post-hurricane recovery, we found a decrease in community-weighted mean values for traits associated with greater drought resistance (leaf turgor loss point, P50 , SMP50 ) and an increase in capacitance, which has been linked with lower drought resistance. Hurricane damage favors slow-growing, drought-tolerant species, whereas post-hurricane high resource conditions favor acquisitive, fast-growing but drought-vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.


Cyclonic Storms , Droughts , Ecosystem , Forests , Plant Leaves/physiology , Trees/physiology , Tropical Climate , Water/physiology
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article En | MEDLINE | ID: mdl-34845017

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Conservation of Natural Resources , Forests , Models, Biological , Tropical Climate
9.
Ecol Evol ; 11(24): 17672-17685, 2021 Dec.
Article En | MEDLINE | ID: mdl-35003631

We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non-inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation-rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species-rich on cation-poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non-inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.

10.
Sci Rep ; 10(1): 4318, 2020 03 09.
Article En | MEDLINE | ID: mdl-32152355

Projected increases in cyclonic storm intensity under a warming climate will have profound effects on forests, potentially changing these ecosystems from carbon sinks to sources. Forecasting storm impacts on these ecosystems requires consideration of risk factors associated with storm meteorology, landscape structure, and forest attributes. Here we evaluate risk factors associated with damage severity caused by Hurricanes María and Irma across Puerto Rican forests. Using field and remote sensing data, total forest aboveground biomass (AGB) lost to the storms was estimated at 10.44 (±2.33) Tg, ca. 23% of island-wide pre-hurricane forest AGB. Storm-related rainfall was a stronger predictor of forest damage than maximum wind speeds. Soil water storage capacity was also an important risk factor, corroborating the influence of rainfall on forest damage. Expected increases of 20% in hurricane-associated rainfall in the North Atlantic highlight the need to consider how such shifts, together with high speed winds, will affect terrestrial ecosystems.

11.
Proc Natl Acad Sci U S A ; 117(8): 4243-4251, 2020 02 25.
Article En | MEDLINE | ID: mdl-32047036

Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Sorghum/genetics , Striga/genetics , Adaptation, Physiological , Genetic Variation , Genome, Plant , Genomics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Weeds/genetics , Plant Weeds/physiology , Sorghum/physiology , Striga/physiology
12.
Ecology ; 100(12): e02841, 2019 Dec.
Article En | MEDLINE | ID: mdl-31336390

Western Amazonia is a global biodiversity hotspot that encompasses extensive variation in geologic, climatic, and biotic features. Palms (Arecaceae) are among the most diverse and iconic groups of plants in the region with more than 150 species that exhibit extraordinary variation of geographical distributions, regional abundance patterns, and life history strategies and growth forms, and provide myriad ecosystem services. Understanding the ecological and evolutionary drivers that underpin palm distribution and abundance patterns may shed light on the evolution and ecology of the tropical forest biomes more generally. Edaphic conditions, in particular, are increasingly recognized as critical drivers of tropical plant diversity and distributions but data deficiencies inhibit our understanding of plant-soil relationships at broad scales, especially in the tropics. We present data from 546, 0.25-ha (5 × 500 m) georeferenced transects located throughout western Amazonia where all individual palms were identified, counted, and assigned to a life-history stage. Several environmental covariates were recorded along each transect and surface soil samples were collected from multiple points in N = 464 of transects. Altogether, the transects include 532,602 individuals belonging to 135 species. Variation among transects in terms of palm species richness and abundance is associated with major habitat types and soil properties. The soil properties including pH, acidity, all macronutrients for all samples, and texture, carbon, nitrogen, and micronutrients for some transects vary substantially across the study area, providing insight to broad-scale variation of tropical surface soils. The data provided here will help advance our understanding of plant distributions and abundance patterns, and associations with soil conditions. No copyright restrictions are associated with this data set but please cite this paper if data are used for publication.

13.
Ann Bot ; 123(4): 641-655, 2019 03 14.
Article En | MEDLINE | ID: mdl-30395146

BACKGROUND AND AIMS: Identifying the processes that generate and maintain biodiversity requires understanding of how evolutionary processes interact with abiotic conditions to structure communities. Edaphic gradients are strongly associated with floristic patterns but, compared with climatic gradients, have received relatively little attention. We asked (1) How does the phylogenetic composition of palm communities vary along edaphic gradients within major habitat types? and (2) To what extent are phylogenetic patterns determined by (a) habitat specialists, (b) small versus large palms, and (c) hyperdiverse genera? METHODS: We paired data on palm community composition from 501 transects of 0.25 ha located in two main habitat types (non-inundated uplands and seasonally inundated floodplains) in western Amazonian rain forests with information on soil chemistry, climate, phylogeny and metrics of plant size. We focused on exchangeable base concentration (cmol+ kg-1) as a metric of soil fertility and a floristic index of inundation intensity. We used a null model approach to quantify the standard effect size of mean phylogenetic distance for each transect (a metric of phylogenetic community composition) and related this value to edaphic variables using generalized linear mixed models, including a term for spatial autocorrelation. KEY RESULTS: Overall, we recorded 112 008 individuals belonging to 110 species. Palm communities in non-inundated upland transects (but not floodplain transects) were more phylogenetically clustered in areas of low soil fertility, measured as exchangeable base concentration. In contrast, floodplain transects with more severe flood regimes (as inferred from floristic structure) tended to be phylogenetically clustered. Nearly half of the species recorded (44 %) were upland specialists while 18 % were floodplain specialists. In both habitat types, phylogenetic clustering was largely due to the co-occurrence of small-sized habitat specialists belonging to two hyperdiverse genera (Bactris and Geonoma). CONCLUSIONS: Edaphic conditions are associated with the phylogenetic community structure of palms across western Amazonia, and different factors (specifically, soil fertility and inundation intensity) appear to underlie diversity patterns in non-inundated upland versus floodplain habitats. By linking edaphic gradients with palm community phylogenetic structure, our study reinforces the need to integrate edaphic conditions in eco-evolutionary studies in order to better understand the processes that generate and maintain tropical forest diversity. Our results suggest a role for edaphic niche conservatism in the evolution and distribution of Amazonian palms, a finding with potential relevance for other clades.


Arecaceae , Biodiversity , Floods , Rainforest , Soil/chemistry , Arecaceae/classification , Bolivia , Brazil , Colombia , Ecuador , Peru , Phylogeny
14.
Ecology ; 99(12): 2740-2750, 2018 12.
Article En | MEDLINE | ID: mdl-30485410

Predicting biotic responses to environmental change requires understanding the joint effects of abiotic conditions and biotic interactions on community dynamics. One major challenge is to separate the potentially confounding effects of abiotic environmental variation and local biotic interactions on individual performance. The stress gradient hypothesis (SGH) addresses this issue directly by predicting that the effects of biotic interactions on performance become more positive as the abiotic environment becomes more stressful. It is unclear, however, how the predictions of the SGH apply to plants of differing functional strategies in diverse communities. We asked (1) how the effect of crowding on performance (growth and survival) of trees varies across a precipitation gradient, and (2) how functional strategies (as measured by two key traits: wood density and leaf mass per area, LMA) mediate average demographic rates and responses to crowding across the gradient. We built trait-based neighborhood models of growth and survival across a regional precipitation gradient where increasing precipitation is associated with reduced abiotic stress. In total, our dataset comprised ~170,000 individual trees belonging to 252 species. The effect of crowding on tree performance varied across the gradient; crowding negatively affected growth across plots and positively affected survival in the wettest plot. Functional traits mediated average demographic rates across the gradient, but we did not find clear evidence that the strength of these responses depends on species' traits. Our study lends support to the SGH and demonstrates how a trait-based perspective can advance these concepts by linking the diversity of species interactions with functional variation across abiotic gradients.


Trees , Wood , Phenotype , Plant Leaves , Plants
15.
Nat Ecol Evol ; 2(7): 1104-1111, 2018 07.
Article En | MEDLINE | ID: mdl-29807995

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.


Fabaceae/growth & development , Forests , Rain , Trees/growth & development , Central America , Population Density , Puerto Rico , South America
16.
Ecol Evol ; 8(3): 1655-1672, 2018 02.
Article En | MEDLINE | ID: mdl-29435241

In the southwestern USA, recent large-scale die-offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. We hypothesized that piñon pines (Pinus edulis) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a 7-year experiment in central New Mexico with three watering treatments (irrigated, normal, and rain exclusion). We analyzed how variation in "evaporative structure" (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip (d), defining the yearly ratios SA:LA and SA:LA/d. Needle length (l) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness, while stomatal diameter was reduced. As a result, anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/d became highly nonlinear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. In new branch tissues, the response of annual functional ratios to water stress was immediate (same year) and does not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates.

17.
Ecology ; 99(3): 607-620, 2018 03.
Article En | MEDLINE | ID: mdl-29281752

Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession.


Mycorrhizae/genetics , Fungi , Puerto Rico , Seedlings/microbiology , Soil Microbiology , Trees/microbiology
18.
Glob Chang Biol ; 24(2): e692-e704, 2018 02.
Article En | MEDLINE | ID: mdl-29194879

Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors-soil moisture, understory light, and conspecific neighborhood density-modulate these responses. Community-wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community-wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long-term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long-term stand dynamics.


Climate Change , Forests , Tropical Climate , Biodiversity , Environmental Restoration and Remediation , Models, Biological , Rain , Seedlings/physiology , Soil , Time Factors , Trees/physiology
19.
Ecology ; 98(11): 2743-2750, 2017 Nov.
Article En | MEDLINE | ID: mdl-28833040

Mechanisms of community assembly and ecosystem function are often analyzed using community-weighted mean trait values (CWMs). We present a novel conceptual framework to quantify the contribution of demographic processes (i.e., growth, recruitment, and mortality) to temporal changes in CWMs. We used this framework to analyze mechanisms of secondary succession in wet tropical forests in Mexico. Seed size increased over time, reflecting a trade-off between colonization by small seeds early in succession, to establishment by large seeds later in succession. Specific leaf area (SLA) and leaf phosphorus content decreased over time, reflecting a trade-off between fast growth early in succession vs. high survival late in succession. On average, CWM shifts were driven mainly (70%) by growth of surviving trees that comprise the bulk of standing biomass, then mortality (25%), and weakly by recruitment (5%). Trait shifts of growing and recruiting trees mirrored the CWM trait shifts, and traits of dying trees did not change during succession, indicating that these traits are important for recruitment and growth, but not for mortality, during the first 30 yr of succession. Identifying the demographic drivers of functional composition change links population dynamics to community change, and enhances insights into mechanisms of succession.


Ecosystem , Forests , Mexico , Trees , Tropical Climate
20.
PeerJ ; 5: e3104, 2017.
Article En | MEDLINE | ID: mdl-28321366

Invasive allergenic plant species may have severe health-related impacts. In this study we aim to predict the effects of climate change on the distribution of three allergenic ragweed species (Ambrosia spp.) in Europe and discuss the potential associated health impact. We built species distribution models based on presence-only data for three ragweed species, using MAXENT software. Future climatic habitat suitability was modeled under two IPCC climate change scenarios (RCP 6.0 and RCP 8.5). We quantify the extent of the increase in 'high allergy risk' (HAR) areas, i.e., parts of Europe with climatic conditions corresponding to the highest quartile (25%) of present day habitat suitability for each of the three species. We estimate that by year 2100, the distribution range of all three ragweed species increases towards Northern and Eastern Europe under all climate scenarios. HAR areas will expand in Europe by 27-100%, depending on species and climate scenario. Novel HAR areas will occur mostly in Denmark, France, Germany, Russia and the Baltic countries, and overlap with densely populated cities such as Paris and St. Petersburg. We conclude that areas in Europe affected by severe ragweed associated allergy problems are likely to increase substantially by year 2100, affecting millions of people. To avoid this, management strategies must be developed that restrict ragweed dispersal and establishment of new populations. Precautionary efforts should limit the spread of ragweed seeds and reduce existing populations. Only by applying cross-countries management plans can managers mitigate future health risks and economical consequences of a ragweed expansion in Europe.

...