Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 310
1.
J Pak Med Assoc ; 74(4 (Supple-4)): S170-S174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38712428

This study focuses on the current applications, potential, and challenges to Artificial Intelligence (AI) integration in vascular surgery with specific emphasis on its relevance in Pakistan. Despite the benefits of AI in vascular surgery, there is a substantial gap in its adoption in Pakistan compared to global standards. In our context with limited resources and a scarcity of vascular surgeons, AI can serve as a promising solution. It can enhance healthcare accessibility, improve diagnostic accuracy, and alleviate the workload on vascular surgeons. However, hurdles including the absence of a comprehensive vascular surgery database, a shortage of AI experts, and potential algorithmic biases pose significant challenges to AI implementation. Despite these obstacles, the study underscores the imperative for continued research, collaborative efforts, and investments to unlock the full potential of AI and elevate vascular healthcare standards in Pakistan.


Artificial Intelligence , Vascular Surgical Procedures , Pakistan , Humans , Vascular Surgical Procedures/methods
2.
Cureus ; 16(4): e58589, 2024 Apr.
Article En | MEDLINE | ID: mdl-38765388

COVID-19 infections are known to cause multi-organ complications. Hematological complications like autoimmune hemolytic anemia with a positive direct antiglobulin test (DAT), are commonly encountered. However, Coombs-negative hemolytic anemia is extremely rare. We report an interesting case of an elderly female with moderate-severe acute respiratory distress syndrome in the setting of COVID-19 pneumonia-causing Coombs-negative hemolytic anemia. This patient initially presented with sudden onset abdominal pain and vomiting, found to have an incarcerated inguinal hernia with small bowel obstruction (SBO) on imaging. Additionally, labs revealed positive COVID-19 antigen test and normocytic anemia. The hospital course was complicated by worsening hemolytic anemia and thrombocytopenia requiring blood products. Extensive workup for hemolysis in this patient with no prior hematological abnormalities, was negative for DAT and other conditions associated with or causative of hemolysis. At discharge, hemolytic parameters improved and on follow-up, hemoglobin returned to baseline, and repeat hemolytic parameters were normal. This case emphasizes the importance of considering SARS-CoV-2 along with other viral infections as one of the differentials for Coombs-negative hemolytic anemia.

3.
Medicina (Kaunas) ; 60(5)2024 May 11.
Article En | MEDLINE | ID: mdl-38792983

Background and Objectives: Non-Hodgkin lymphoma (NHL) has the sixth-highest malignancy-related mortality in the United States (US). However, inequalities exist in access to advanced care in specific patient populations. We aim to study the racial disparities in major adverse cardiovascular and cerebrovascular events (MACCEs) in NHL patients. Materials and Methods: Using ICD-10 codes, patients with NHL were identified from the US National Inpatient Sample 2016-2019 database. Baseline characteristics, comorbidities, and MACCE outcomes were studied, and results were stratified based on the patient's race. Results: Of the 777,740 patients with a diagnosis of NHL, 74.22% (577,215) were White, 9.15% (71,180) were Black, 9.39% (73,000) were Hispanic, 3.33% (25,935) were Asian/Pacific Islander, 0.36% (2855) were Native American, and 3.54% (27,555) belonged to other races. When compared to White patients, all-cause mortality (ACM) was significantly higher in Black patients (aOR 1.27, 95% CI 1.17-1.38, p < 0.001) and in Asian/Pacific Islander patients (aOR 1.27, 95% CI 1.12-1.45, p < 0.001). Sudden cardiac death was found to have a higher aOR in all racial sub-groups as compared to White patients; however, it was statistically significant in Black patients only (aOR 1.81, 95% CI 1.52-2.16, p < 0.001). Atrial fibrillation (AF) risk was significantly lower in patients who were Black, Hispanic, and of other races compared to White patients. Acute myocardial infarction (AMI) was noted to have a statistically significantly lower aOR in Black patients (0.70, 95% CI 0.60-0.81, p < 0.001), Hispanic patients (0.69, 95% CI 0.59-0.80, p < 0.001), and patients of other races (0.57, 95% CI 0.43-0.75, p < 0.001) as compared to White patients. Conclusions: Racial disparities are found in MACCEs among NHL patients, which is likely multifactorial, highlighting the need for healthcare strategies stratified by race to mitigate the increased risk of MACCEs. Further research involving possible epigenomic influences and social determinants of health contributing to poorer outcomes in Black and Asian/Pacific Islander patients with NHL is imperative.


Cardiovascular Diseases , Cerebrovascular Disorders , Lymphoma, Non-Hodgkin , Humans , Female , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/mortality , Lymphoma, Non-Hodgkin/ethnology , Male , Middle Aged , United States/epidemiology , Aged , Cerebrovascular Disorders/mortality , Cerebrovascular Disorders/ethnology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/ethnology , Adult , Racial Groups/statistics & numerical data , Aged, 80 and over , Healthcare Disparities/statistics & numerical data , Healthcare Disparities/ethnology , White People/statistics & numerical data
4.
Article En | MEDLINE | ID: mdl-38821673

Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.


Benzhydryl Compounds , DNA Damage , DNA Methylation , Diabetes Mellitus, Experimental , Glucosides , Oxidative Stress , Animals , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , DNA Methylation/drug effects , DNA Damage/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Mice , Oxidative Stress/drug effects , Male , Hypoglycemic Agents/pharmacology , Micronucleus Tests , DNA Repair/drug effects , Comet Assay
5.
Phys Chem Chem Phys ; 26(22): 16369-16377, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38805303

Graphene oxide (GO) has become the most attractive material for membrane technology owing to its potential application as a nanofiller in water treatment, purification, and desalination. In this study, we incorporated mica as a cross-linking reagent to increase the interlayer spacing and stability of GO sheets and fabricated a mica/GO (MGO) membrane for the first time. The MGO membrane (260 ± 10 nm) exhibits 100% rejection for biomolecules such as tannic acid (TA) and bovine serum albumin (BSA) and >99% rejection for multiple probe molecules, such as methylene blue, methyl orange, congo red, and rhodamine B. The high rejection of membranes can be attributed to the surface interaction of mica with GO nanosheets through covalent interaction, which enhances the stability and separation efficiency of the membranes for probe ions and molecules. This ultrathin MGO membrane also exhibits much better water permeability at 870 ± 5 L m-2 h-1 bar-1, which is 10-100 times greater than that reported for pure GO and GO-based composite membranes. Additionally, the membrane shows high rejection for salt ions (70%). Furthermore, the stability of the MGO membranes was evaluated under various conditions, and the membranes demonstrated remarkable stability for up to 60 days in a neutral environment.

6.
J Neuroimmunol ; 391: 578365, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723577

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.


Aflatoxin B1 , Antigens, CD19 , Disease Models, Animal , Animals , Mice , Aflatoxin B1/toxicity , Antigens, CD19/metabolism , Male , Inflammation Mediators/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/immunology , Autistic Disorder/metabolism , Mice, Transgenic
7.
ACS Omega ; 9(13): 15677-15688, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38585081

Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic ß-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.

8.
ACS Omega ; 9(13): 15383-15400, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38585127

This study presents an environmentally friendly synthesis of stable silver nanoparticles (Ag-NPs) using the methanolic extract of Breynia nivosa. Initial phytochemical analysis of the extract revealed the presence of alkaloids, flavonoids, glycosides, saponins, and tannins. Further characterization through high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analyses identified a diverse array of bioactive compounds, including hydroquinone, stearic acid, neophytadiene, 9,12-octadecadienoic acid (Z,Z), methyl ester, and others. The addition of B. nivosa methanolic extract to an AgNO3 solution resulted in a color change, confirming the green synthesis of Ag-NPs through the reduction of AgNO3, as made evident by ultraviolet-visible (UV-vis) spectroscopy. X-ray diffraction (XRD) analysis provided valuable insights into the crystal structure, and scanning electron microscopy (SEM) analysis visualized the predominantly spherical shape of the Ag-NPs. However, the zeta (ζ)-potential and dynamic light scattering (DLS) analyses confirmed the stability and nanoscale dimensions of the synthesized Ag-NPs. Meanwhile, Fourier transform infrared (FT-IR) spectra exhibited peaks indicative of various functional groups, including carboxylic acids, phenols, alkanes, and isocyanates. These functional groups played a crucial role in both the reduction and capping processes of the Ag-NPs. The study further explored the antioxidant activity, cytotoxicity, acetylcholinesterase inhibition, and α-amylase inhibition activities of the Ag-NPs of the B. nivosa extract, demonstrating their potential for biomedical and therapeutic applications. In conclusion, this environmentally sustainable synthesis of Ag-NPs from the B. nivosa extract, enriched with bioactive secondary metabolites detected through HPLC and GC-MS analysis, holds promise for diverse applications in the burgeoning field of green nanotechnology.

9.
J Biomol Struct Dyn ; : 1-15, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592189

Globally the SARS-CoV-2 viral infection demands for the new drugs, the TMPRSS2 target plays a vital role in facilitating the virus entry. The aim of the present study is to identify the potential peptide substrate from the Anti-viral database against TMPRSS2 of SARS-CoV-2. The compound screening and variation analysis were performed using molecular docking analysis and online tools such as PROVEAN and SNAP2 server, respectively. The re-docked crystal structure peptide substrate exhibits -128.151 kcal/mol whereas the RRKK peptide substrate shows -134.158 kcal/mol. Further, the selected compounds were proceeded with Molecular Dynamics Simulation, it explores the stability of the complex by revealing the hotspot residues (His296 and Ser441) were active for nucleophilic attack against TMPRSS2. The average Binding Free Energy values computed through MM/GBSA for RRKK, Camostat, and Crystal Structure were shown -69.9278 kcal/mol, -64.5983 kcal/mol, and -63.9755 kcal/mol, respectively against TMPRSS2. The 'rate of acylation' emerges as an indicator for RRKK's efficacy, it maintains the distance of 3.2 Å with Ser441 resembles, whilst its -NH backbone stabilizes at 2.5 Å 'Michaelis Complex' which leads to prevent the entry of SARS-CoV-2 to human cells. The sequence variation analysis explores that the V160 and G6 substitutions are essential to emphasize the uncover possibilities for the ongoing drug discovery research. Therefore, the identified peptide substrate found to be potent against SARS-CoV-2 and these results will be valuable for ongoing drug discovery research.Communicated by Ramaswamy H. Sarma.

11.
Reprod Toxicol ; 126: 108599, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679149

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Aflatoxin B1 , Autism Spectrum Disorder , Brain , Disease Models, Animal , Spleen , Animals , Autism Spectrum Disorder/chemically induced , Aflatoxin B1/toxicity , Brain/metabolism , Brain/drug effects , Spleen/drug effects , Spleen/metabolism , Male , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Mice , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
12.
BMJ Open ; 14(3): e080853, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553052

OBJECTIVE: To develop and content validate a questionnaire to assess the financial and functional impact of major lower limb amputation in patients with diabetes-related foot disease. DESIGN: Prospective observational study. SETTING: This study was conducted at a tertiary care centre in Pakistan. PARTICIPANTS: We conducted a thorough literature review and a group interview with 10 participants, resulting in domain identification and item generation. The group included seven patients with diabetes-related foot disease who underwent major lower limb amputation and three caregivers. Subsequently, a focused group discussion was held to assess overlap and duplication among the items, and two rounds of content validation were carried out by five content and five lay experts in both English and Urdu. Question items with a Content Validity Index (CVI) score of >0.79 were retained, items with a CVI score between 0.70 and 0.79 were revised and items with a CVI score of <0.70 were excluded. RESULTS: The initial literature review and group interview resulted in 61 items in the financial and functional domains. After the focused group discussion, the questionnaire was reduced to 37 items. Following two rounds of content validation, the English questionnaire achieved the Scale-Content Validity Index/Average (S-CVI/Ave) of 0.92 and 0.89 on relevance and clarity, respectively. Similarly, the Urdu questionnaire achieved the S-CVI-Ave of 0.92 and 0.95, respectively. CONCLUSION: A 37-item multidimensional questionnaire was developed and rigorously content-validated to assess the financial and functional impact of major lower limb amputation in patients with diabetes-related foot disease. The questionnaire used in this study has shown robust content validity specifically for our population.


Diabetes Mellitus , Foot Diseases , Humans , Lower Extremity/surgery , Pakistan , Reproducibility of Results , Surveys and Questionnaires , Prospective Studies
13.
Curr Gastroenterol Rep ; 26(5): 125-136, 2024 May.
Article En | MEDLINE | ID: mdl-38421577

PURPOSE OF REVIEW: The management of patients with Crohn's disease (CD) undergoing surgery is complex and optimization of modifiable factors perioperatively can improve outcomes. This review focuses on the perioperative management of CD patients undergoing surgery, emphasizing the need for a multi-disciplinary approach. RECENT FINDINGS: Research highlights the benefits of a comprehensive strategy, involving nutritional optimization, psychological assessment, and addressing septic complications before surgery. Despite many CD patients being on immune-suppressing medications, studies indicate that most of these medications are safe to use and should not delay surgery. However, a personalized approach for each case is needed. This review underscores the importance of multi-disciplinary team led peri-operative management of CD patients. We suggest that this can be done at a dedicated perioperative clinic for prehabilitation, with the potential to enhance outcomes for CD patients undergoing surgery.


Crohn Disease , Perioperative Care , Crohn Disease/surgery , Crohn Disease/therapy , Humans , Perioperative Care/methods , Postoperative Complications/prevention & control , Postoperative Complications/etiology
14.
RSC Adv ; 14(3): 1581-1592, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38179100

In semiconductors, generating charges via catalysis is a highly challenging task and characteristic of heterojunction photoanodes. A dithiophene-4,8-dione spin-coated film layer has a positive effect on the holes (positive charge carriers) for a long time in BHJ films in the solid state of materials. The photoexcited holes created in the BHJ film can persist for long periods of time, which is beneficial for catalytic reactions. In this study, a photoanode is electrically coupled to a hydrogen gas-evolving platinum cathode. When the photoanode is electrically coupled to a H2 gas evolving Pt cathode, curiously long-lived hole polaron states are observed on the timescale of seconds under operational conditions. These long-lived holes play a crucial role in enhancing the hydrogen peroxide oxidation performance of the film overlayer spin-coated onto the photoanode. The spin-coated film overlayer on the photoanode achieves the best oxidation performance for hydrogen peroxide of approximately 6.5 mA cm-2 at 1.23 VRHE without the need of a catalyst. This demonstrates the effectiveness of the overlayer in improving the catalytic performance of the photoanode with a better efficiency of 17.5% when using 851 nm excitation. This indicates that a relatively high percentage of incident photons at that specific wavelength is converted into photocurrent by the photoanode. This approach can lead to more efficient oxidation catalysis as demonstrated in the case of hydrogen peroxide oxidation.

15.
ACS Omega ; 9(3): 4057-4072, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38284084

Cadmium, a ubiquitous environmental pollutant, has been implicated in the disruption of various metabolic pathways, contributing to the development of insulin resistance, glucose intolerance, and associated metabolic disorders. This study aimed to investigate the cadmium chloride (CdCl2) exposure on metabolic pathways and to assess the potential therapeutic efficacy of the taxifolin-enriched extract in mitigating these disruptions by modulating biochemical pathways. Taxifolin-enriched extract (TEE) was prepared from Pinus roxburghii bark using a green extraction method. About 60 Wistar albino rats were divided into six groups: the control group (n = 10), the CdCl2 group (30 mg/kg) (n = 10), and four groups (each comprises n = 10) treated with 30 mg/kg CdCl2 in combination with metformin (100 mg/kg), ascorbic acid, taxifolin (30 mg/kg), and TEE (30 mg/kg), respectively. After the treatment period of 1 month, a comprehensive assessment of metabolic biomarkers and gene expressions that regulate the metabolism of carbohydrates and lipids was conducted to evaluate the impact of CdCl2 exposure and the potential protective effects of TEE. The results revealed that CdCl2 exposure significantly increased (P < 0.001) serum levels of α-glucosidase, α-amylase, insulin, G6PC, hexokinases, TGs, LDL, HMG-CoA reductase, and pro-inflammatory cytokines such as IL-6 and TNF-α. Conversely, CdCl2 exposure led to a reduction in HDL, antioxidant enzyme levels, phosphofructokinases, and glucose-6-phosphatase dehydrogenase. However, the administration of TEE alongside CdCl2 substantially mitigated (P < 0.001) these fluctuations in metabolic and inflammatory biomarker levels induced by CdCl2 exposure. Both TEE and taxifolin treatment effectively lowered the elevated levels of α-amylase, α-glucosidase, G6PC, insulin, TGs, HMG-CoA reductase, leptin, ALT, AST, blood urea nitrogen, creatinine, and pro-inflammatory cytokines while simultaneously enhancing levels of HDL cholesterol and antioxidant enzymes. Moreover, CdCl2 exposure suppressed mRNA expression of critical metabolic biomarkers such as glucose transporter 2 (GLUT2), insulin-like growth factor 1 (IGF-1), lactate dehydrogenase, and HMG-CoA lyases while upregulating the mRNA expression of angiotensin receptor 2 and vasopressin, key metabolic biomarkers involved in glucose metabolism and insulin regulation. TEE demonstrated the potential to restore normal metabolic functions and reduce the adverse impacts caused by CdCl2 exposure by mitigating disturbances in several metabolic pathways and restoring gene expression of critical metabolic biomarkers related to glucose metabolism and insulin regulation. Nevertheless, further investigation is warranted to comprehensively understand the underlying mechanisms and optimize the appropriate dosage and duration of TEE treatment for achieving the most effective therapeutic outcomes.

16.
J Neuroimmunol ; 386: 578253, 2024 01 15.
Article En | MEDLINE | ID: mdl-38064869

Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.


Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Autistic Disorder/chemically induced , Autistic Disorder/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Cadmium/toxicity , Cadmium/metabolism , NF-kappa B/metabolism , Brain/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , RNA, Messenger , Disease Models, Animal , Mice, Inbred C57BL , Mice, Inbred Strains
17.
Int Immunopharmacol ; 126: 111293, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38056199

Psoriasis is a devastating autoimmune illness resulting from excessive keratinocyte growth and leukocyte infiltration into the dermis/epidermis. In the pathogenesis of psoriasis, different immune cells such as myeloid cells and CD4 + T cells play a key role. Th17/Th1 immune responses and oxidant-antioxidant responses are critical in regulation of psoriatic inflammation. Di-2-ethylhexyl phthalate (DEHP) is one of the well-known plasticizers and has widespread use worldwide. DEHP exposure through ingestion may produce harmful effects on the skin through systemic inflammation and oxidative stress, which may modify psoriatic inflammation. However, the effect of oral DEHP exposure on inflammatory cytokines and Nrf2/iNOS signaling in myeloid cells and CD4 + T cells in the context of psoriatic inflammation has not been investigated earlier. Therefore, this study explored the effect of DEHP on systemic inflammation in myeloid cells (IL-6, IL-17A, IL-23), Th17 (p-STAT3, IL-17A, IL-23R, TNF-α), Th1 (IFN-γ), Treg (Foxp3, IL-10), and Nrf2/iNOS signaling in imiquimod (IMQ)-induced mouse model of psoriasis-like inflammation. Our study showed increased Th17 signaling in imiquimod model which was further aggravated by DEHP exposure. Further, Nrf2 and iNOS signaling were also elevated in IMQ model where DEHP exposure further increased iNOS expression but did not modify the Nrf2 expression. Most importantly, IL-17A levels were also elevated in myeloid cells along with IL-6 which were further elevated by DEHP exposure. Overall, this study shows that IL-17A signaling is upregulated, whereas there is deficiency of Nrf2/HO-1 signaling by DEHP exposure in mice with psoriasiform inflammation. These observations suggest that DEHP aggravates IL-17A-mediated signaling both in CD4 + T cells as well as myeloid cells which is linked to exacerbation of IMQ-induced psoriatic inflammation in mice. Strategies that counteract the effect of DEHP exposure in the context of psoriatic inflammation through downregulation of IL-17A may be fruitful.


Diethylhexyl Phthalate , Environmental Pollutants , Psoriasis , Animals , Mice , Imiquimod/pharmacology , Interleukin-17/metabolism , NF-E2-Related Factor 2/metabolism , Interleukin-6/metabolism , Environmental Pollutants/adverse effects , Diethylhexyl Phthalate/toxicity , Skin/pathology , Inflammation/metabolism , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal
18.
PeerJ ; 11: e16481, 2023.
Article En | MEDLINE | ID: mdl-38077444

Background: Exosomes, microvesicles, carry and release several vital molecules across cells, tissues, and organs. Epicardial adipose tissue exosomes are critical in the development and progression of coronary artery disease (CAD). It is hypothesized that exosomes may transport causative molecules from inflamed tissue and deliver to the target tissue and progress CAD. Thus, identifying and inhibiting the CAD-associated proteins that are being transported to other cells via exosomes will help slow the progression of CAD. Methods: This study uses a systems biological approach that integrates differential gene expression in the CAD, exosomal cargo assessment, protein network construction, and functional enrichment to identify the crucial exosomal cargo protein target. Meanwhile, absorption, distribution, metabolism, and excretion (ADME) screening of Panax ginseng-derived compounds was conducted and then docked against the protein target to identify potential inhibitors and then subjected to molecular dynamics simulation (MDS) to understand the behavior of the protein-ligand complex till 100 nanoseconds. Finally, density functional theory (DFT) calculation was performed on the ligand with the highest affinity with the target. Results: Through the systems biological approach, Mothers against decapentaplegic homolog 2 protein (SMAD2) was determined as a potential target that linked with PI3K-Akt signaling, Ubiquitin mediated proteolysis, and the focal adhesion pathway. Further, screening of 190 Panax ginseng compounds, 27 showed drug-likeness properties. Inermin, a phytochemical showed good docking with -5.02 kcal/mol and achieved stability confirmation with SMAD2 based on MDS when compared to the known CAD drugs. Additionally, DFT analysis of inermin showed high chemical activity that significantly contributes to effective target binding. Overall, our computational study suggests that inermin could act against SMAD2 and may aid in the management of CAD.


Coronary Artery Disease , Panax , Molecular Dynamics Simulation , Ligands , Phosphatidylinositol 3-Kinases
19.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38138161

Background and Objectives: Cyclooxygenase-2 (COX-2) is mostly linked to inflammation and has been validated as a molecular target for treating inflammatory diseases. The present study aimed to identify novel compounds that could inhibit COX-2, which is associated with various diseases including inflammation, and in such a scenario, plant-derived biomolecules have been considered as attractive candidates. Materials and Methods: In the present study, physiochemical properties and toxicity of natural compounds/drugs were determined by SWISSADME and ProTox-II. In the present study, the molecular docking binding features of saffron derivatives (crocetin, picrocrocin, quercetin, safranal, crocin, rutin, and dimethylcrocetin) against human COX-2 protein were assessed. Moreover, protein-protein interactions, topographic properties, gene enrichment analysis and molecular dynamics simulation were also determined. Results: The present study revealed that picrocrocin showed the highest binding affinity of -8.1 kcal/mol when docked against the COX-2 protein. PROCHECK analysis revealed that 90.3% of the protein residues were found in the most favored region. Compartmentalized Protein-Protein Interaction identified 90 interactions with an average interaction score of 0.62, and the highest localization score of 0.99 found in secretory pathways. The Computed Atlas of Surface Topography of Proteins was used to identify binding pockets and important residues that could serve as drug targets. Use of WEBnmα revealed protein dynamics by using normal mode analysis. Ligand and Receptor Dynamics used the Molecular Generalized Born Surface Area approach to determine the binding free energy of the protein. Gene enrichment analysis revealed that ovarian steroidogenesis, was the most significant enrichment pathway. Molecular dynamic simulations were executed for the best docked (COX-2-picrocrocin) complex, and the results displayed conformational alterations with more pronounced surface residue fluctuations in COX-2 with loss of the intra-protein hydrogen bonding network. The direct interaction of picrocrocin with various crucial amino-acid residues like GLN203, TYR385, HIS386 and 388, ASN382, and TRP387 causes modifications in these residues, which ultimately attenuates the activity of COX-2 protein. Conclusions: The present study revealed that picrocrocin was the most effective biomolecule and could be repurposed via computational approaches. However, various in vivo and in vitro observations are still needed.


Crocus , Humans , Molecular Docking Simulation , Cyclooxygenase 2 , Network Pharmacology , Proteins , Inflammation
20.
Glob Chall ; 7(11): 2300178, 2023 Nov.
Article En | MEDLINE | ID: mdl-37970538

This paper reports the Maisotsenko's cycle-based waste heat recovery system with enhanced humidification to exploit the maximum waste heat recovery potential of the gas turbine. This research uses an integrated methodology coupling thermodynamic balances with heat transfer model of air saturator. The performance of the system is deduced which are assisted with sensitivity analysis indicating the optimal mass flow rate ratio (0.7-0.8) and pressure ratio (4.5-5.0) between the topping and bottoming cycles, and the air saturator split (extraction) ratio (0.5). The net-work output, energy, and exergy efficiencies of the system are found to be ≈58.39 MW, ≈55.85%, and ≈52.79%, respectively. The maximum exergy destruction ratios are found as 68.2% for the combustion chamber, 16.0% for the topping turbine, 5.7% for topping compressor, 4.9% air saturator. The integration of Maisotsenko's cycle-based waste heat recovery system with a comprehensive thermodynamic model, as demonstrated in this research, offers valuable insights into enhancing the efficiency, cost-effectiveness, and environmental impact of gas turbines. By presenting fundamental equations related to thermodynamic balances, this work serves as an invaluable educational resource, equipping future researchers and students with the knowledge and skills needed to advance the study of thermodynamics and sustainable energy solutions.

...