Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 49(5): 3549-3557, 2022 May.
Article in English | MEDLINE | ID: mdl-35445312

ABSTRACT

BACKGROUND: Breast Cancer is the most frequent neoplasm diagnosed among women worldwide. Genetic background and lifestyle/environment play a significant role in the disease etiology. According to Genome-wide association studies, some single-nucleotide polymorphisms such as 2q35-rs13387042-(G/A) have been introduced to be associated with breast cancer risk and features. In this study, we aimed to evaluate the association between this variant and the risk of breast cancer in a cohort of Iranian women. METHODS: Demographics and clinical information were collected by interview and using patients' medical records, respectively. DNA was extracted from 506 blood samples, including 184 patients and 322 controls, and genotyping was performed using allele specific-PCR. SPSS v16 was used for statistical analysis. RESULT: Statistically significant association was observed between AA genotype and disease risk in all patients [padj = 0.048; ORadj = 2.13, 95% CI (1.01-4.50)] and also ER-positive breast cancers [padj = 0.015; ORadj = 2.12, 95% CI (1.16-3.88)]. There was no association between rs13387042 and histopathological characteristics of the disease. Furthermore, overall survival was not statistically associated with genotype and allelic models even after adjustment for stage and receptor status (p > 0.05). CONCLUSION: There is a statistically significant association between 2q35-rs13387042 and breast cancer risk. rs13387042-AA genotype might be a risk-conferring factor for breast cancer development in the Iranian population. However, further consideration is suggested to confirm its role in risk assessment and probable association with other genetic markers.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Iran , Polymorphism, Single Nucleotide/genetics , Risk Factors
2.
Gene ; 821: 146328, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35181505

ABSTRACT

BACKGROUND: Molecular-based studies have revealed heterogeneity in Breast cancer BC while also improving classification and treatment. However, efforts are underway to distinguish between distinct subtypes of breast cancer. In this study, the results of several microarray studies were combined to identify genes and pathways specific to each BC subtype. METHODS: Meta-analysis of multiple gene expression profile datasets was screened to find differentially expressed genes (DEGs) across subtypes of BC and normal breast tissue samples. Protein-protein interaction network and gene set enrichment analysis were used to identify critical genes and pathways associated with BC subtypes. The differentially expressed genes from meta-analysis was validated using an independent comprehensive breast cancer RNA-sequencing dataset obtained from the Cancer Genome Atlas (TCGA). RESULTS: We identified 110 DEGs (13 DEGs in all and 97 DEGs in each subtype) across subtypes of BC. All subtypes had a small set of shared DEGs enriched in the Chemokine receptor bind chemokine pathway. Luminal A specific were enriched in the translational elongation process in mitochondria, and the enhanced process in luminal B subtypes was interferon-alpha/beta signaling. Cell cycle and mitotic DEGs were enriched in the basal-like group. All subtype-specific DEG genes (100%) were successfully validated for Luminal A, Luminal B, ERBB2, and Normal-like. However, the validation percentage for Basal-like group was 77.8%. CONCLUSION: Integrating researches such as a meta-analysis of gene expression might be more effective in uncovering subtype-specific DEGs and pathways than a single-study analysis. It would be more beneficial to increase the number of studies that use matched BC subtypes along with GEO profiling approaches to reach a better result regarding DEGs and reduce probable biases. However, achieving 77.8% overlap in basal-specific genes and complete concordance in specific genes related to other subtypes can implicate the strength of our analysis for discovering the subtype-specific genes.


Subject(s)
Breast Neoplasms/classification , Gene Expression Profiling/methods , Gene Regulatory Networks , Breast Neoplasms/genetics , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis , Sequence Analysis, RNA
3.
Front Cell Dev Biol ; 10: 1065837, 2022.
Article in English | MEDLINE | ID: mdl-36619866

ABSTRACT

Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.

4.
Front Oncol ; 11: 650256, 2021.
Article in English | MEDLINE | ID: mdl-33987085

ABSTRACT

Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.

5.
Pathol Res Pract ; 221: 153443, 2021 May.
Article in English | MEDLINE | ID: mdl-33930607

ABSTRACT

Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the control of virus spread has remained challenging given the pitfalls of the current diagnostic tests. Nevertheless, RNA amplification techniques have been the gold standard among other diagnostic methods for monitoring clinical samples for the presence of the virus. In the current paper, we review the shortcomings and strengths of RT-PCR (real-time polymerase chain reaction) techniques for diagnosis of coronavirus disease (COVID)-19. We address the repercussions of false-negative and false-positive rates encountered in the test, summarize approaches to improve the overall sensitivity of this method. We discuss the barriers to the widespread use of the RT-PCR test, and some technical advances, such as RT-LAMP (reverse-transcriptase-loop mediated isothermal amplification). We also address how other molecular techniques, such as immunodiagnostic tests can be used to avoid incorrect interpretation of RT-PCR tests.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Humans
SELECTION OF CITATIONS
SEARCH DETAIL