Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Sci Rep ; 14(1): 2299, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280889

ABSTRACT

Spermatogonial stem cells (SSCs) are the foundation of life-long spermatogenesis. While SSC research has advanced greatly over the past two decades, characterization of SSCs during postnatal development has not been well documented. Using the mouse as a model, in this study, we defined the immunophenotypic profiles of testis cells during the course of postnatal development using multi-parameter flow cytometry with up to five cell-surface antigens. We found that the profiles progress over time in a manner specific to developmental stages. We then isolated multiple cell fractions at different developmental stages using fluorescent-activated cell sorting (FACS) and identified specific cell populations with prominent capacities to regenerate spermatogenesis upon transplantation and to initiate long-term SSC culture. The data indicated that the cell fraction with the highest level of regeneration capacity exhibited the most prominent potential to initiate SSC culture, regardless of age. Interestingly, refinement of cell fractionation using GFRA1 and KIT did not lead to further enrichment of regenerative and culture-initiating stem cells, suggesting that when a high degree of SSC enrichment is achieved, standard markers of SSC self-renewal or commitment may lose their effectiveness to distinguish cells at the stem cell state from committed progenitors. This study provides a significant information resource for future studies and practical applications of mammalian SSCs.


Subject(s)
Spermatogonia , Testis , Male , Mice , Animals , Cells, Cultured , Spermatogenesis/genetics , Stem Cells , Mammals
2.
Mol Genet Metab ; 140(3): 107691, 2023 11.
Article in English | MEDLINE | ID: mdl-37660570

ABSTRACT

Mitochondrial DNA m.3243A > G mutation causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and its associated multi-organ disorders, including diabetes. To clarify associations between m.3243A > G organ heteroplasmy and clinical phenotypes, including the age at death, we combined genetic and pathological examinations from seven unreported and 36 literature cases of autopsied subjects. Clinical characteristics of subjects were as follows: male, 13; female, 28; unknown, 2; the age at death, 36.9 ± 20.2 [4-82] years; BMI, 16.0 ± 2.9 [13.0-22.3]; diabetes, N = 21 (49%), diabetes onset age 38.6 ± 14.2 years; deafness, N = 27 (63%); stroke-like episodes (StLEp), N = 25 (58%); congestive heart failure (CHF), N = 15 (35%); CHF onset age, 51.3 ± 14.5 years. Causes of death (N = 32) were as follows: cardiac, N = 13 (41%); infection, N = 8 (25%); StLEp, N = 4 (13%); gastrointestinal, N = 4 (13%); renal, N = 2 (6%); hepatic, N = 1 (2%). High and low heteroplasmies were confirmed in non-regenerative and regenerative organs, respectively. Heteroplasmy of the liver, spleen, leukocytes, and kidney for all subjects was significantly associated with the age at death. Furthermore, the age at death was related to juvenile-onset (any m.3243A > G-related symptoms appeared before 20) and stroke-like episodes. Multiple linear regression analysis with the age at death as an objective variable showed the significant contribution of liver heteroplasty and juvenile-onset to the age at death. m.3243A > G organ heteroplasmy levels, particularly hepatic heteroplasmy, are significantly associated with the age at death in deceased cases.


Subject(s)
Diabetes Mellitus , MELAS Syndrome , Stroke , Humans , Male , Female , Adult , Middle Aged , Aged , Child, Preschool , Child , Adolescent , Young Adult , Aged, 80 and over , Heteroplasmy , DNA, Mitochondrial/genetics , Mutation , Stroke/complications , Liver/pathology , MELAS Syndrome/genetics
3.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37539494

ABSTRACT

Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.


Subject(s)
Saccharomyces cerevisiae Proteins , rab GTP-Binding Proteins , trans-Golgi Network , Adaptor Proteins, Vesicular Transport/metabolism , Clathrin/metabolism , Endosomes/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , trans-Golgi Network/metabolism , Transcription Factor AP-1/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
4.
Elife ; 122023 07 21.
Article in English | MEDLINE | ID: mdl-37477116

ABSTRACT

Although budding yeast has been extensively used as a model organism for studying organelle functions and intracellular vesicle trafficking, whether it possesses an independent endocytic early/sorting compartment that sorts endocytic cargos to the endo-lysosomal pathway or the recycling pathway has long been unclear. The structure and properties of the endocytic early/sorting compartment differ significantly between organisms; in plant cells, the trans-Golgi network (TGN) serves this role, whereas in mammalian cells a separate intracellular structure performs this function. The yeast syntaxin homolog Tlg2p, widely localizing to the TGN and endosomal compartments, is presumed to act as a Q-SNARE for endocytic vesicles, but which compartment is the direct target for endocytic vesicles remained unanswered. Here we demonstrate by high-speed and high-resolution 4D imaging of fluorescently labeled endocytic cargos that the Tlg2p-residing compartment within the TGN functions as the early/sorting compartment. After arriving here, endocytic cargos are recycled to the plasma membrane or transported to the yeast Rab5-residing endosomal compartment through the pathway requiring the clathrin adaptors GGAs. Interestingly, Gga2p predominantly localizes at the Tlg2p-residing compartment, and the deletion of GGAs has little effect on another TGN region where Sec7p is present but suppresses dynamics of the Tlg2-residing early/sorting compartment, indicating that the Tlg2p- and Sec7p-residing regions are discrete entities in the mutant. Thus, the Tlg2p-residing region seems to serve as an early/sorting compartment and function independently of the Sec7p-residing region within the TGN.


Subject(s)
Saccharomyces cerevisiae , trans-Golgi Network , Animals , trans-Golgi Network/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Transport , Endosomes/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Endocytosis , Mammals/metabolism
5.
Cell Rep ; 42(7): 112737, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37393620

ABSTRACT

Spermatogonial stem cells (SSCs) in the testis support the lifelong production of sperm. SSCs reside within specialized microenvironments called "niches," which are essential for SSC self-renewal and differentiation. However, our understanding of the molecular and cellular interactions between SSCs and niches remains incomplete. Here, we combine spatial transcriptomics, computational analyses, and functional assays to systematically dissect the molecular, cellular, and spatial composition of SSC niches. This allows us to spatially map the ligand-receptor (LR) interaction landscape in both mouse and human testes. Our data demonstrate that pleiotrophin regulates mouse SSC functions through syndecan receptors. We also identify ephrin-A1 as a potential niche factor that influences human SSC functions. Furthermore, we show that the spatial re-distribution of inflammation-related LR interactions underlies diabetes-induced testicular injury. Together, our study demonstrates a systems approach to dissect the complex organization of the stem cell microenvironment in health and disease.


Subject(s)
Stem Cell Niche , Testis , Male , Humans , Mice , Animals , Stem Cell Niche/genetics , Transcriptome/genetics , Semen , Spermatogonia , Cell Differentiation/genetics , Spermatogenesis/genetics
6.
Methods Mol Biol ; 2656: 195-210, 2023.
Article in English | MEDLINE | ID: mdl-37249873

ABSTRACT

Spermatogonial transplantation is the unequivocal method to detect spermatogonial stem cells (SSCs) based strictly on the functional definition of stem cells - the cells' regenerative capacity. This method further allows for SSC quantification. A weakness of spermatogonial transplantation is its time-consuming nature; it takes 2 months to confirm the production of terminally differentiated cells in spermatogenesis, spermatozoa, in mice, which gives the assay endpoint. Using the mouse as the model system, we here describe the basic techniques of spermatogonial transplantation and provide practical guidance to successfully carry out this technique and to interpret data generated.


Subject(s)
Spermatogenesis , Spermatogonia , Male , Mice , Animals , Spermatozoa , Stem Cell Transplantation/methods , Cell Differentiation , Testis
7.
Cell Struct Funct ; 48(1): 19-30, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36517018

ABSTRACT

Phosphatidylserine (PS) is a constituent of the cell membrane, being especially abundant in the cytoplasmic leaflet, and plays important roles in a number of cellular functions, including the formation of cell polarity and intracellular vesicle transport. Several studies in mammalian cells have suggested the role of PS in retrograde membrane traffic through endosomes, but in yeast, where PS is localized primarily at the plasma membrane (PM), the role in intracellular organelles remains unclear. Additionally, it is reported that polarized endocytic site formation is defective in PS-depleted yeast cells, but the role in the endocytic machinery has not been well understood. In this study, to clarify the role of PS in the endocytic pathway, we analyzed the effect of PS depletion on endocytic internalization and post-endocytic transport. We demonstrated that in cell lacking the PS synthase Cho1p (cho1Δ cell), binding and internalization of mating pheromone α-factor into the cell was severely impaired. Interestingly, the processes of endocytosis were mostly unaffected, but protein transport from the trans-Golgi network (TGN) to the PM was defective and localization of cell surface proteins was severely impaired in cho1Δ cells. We also showed that PS accumulated in intracellular compartments in cells lacking Rcy1p and Vps52p, both of which are implicated in endosome-to-PM transport via the TGN, and that the number of Snx4p-residing endosomes was increased in cho1Δ cells. These results suggest that PS plays a crucial role in the transport and localization of cell surface membrane proteins.Key words: phosphatidylserine, endocytosis, recycling, vesicle transport.


Subject(s)
Membrane Proteins , Saccharomyces cerevisiae , Cell Membrane/metabolism , Endocytosis/physiology , Endosomes/metabolism , Membrane Proteins/metabolism , Phosphatidylserines/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , trans-Golgi Network/metabolism
8.
Biomedicines ; 10(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36551973

ABSTRACT

Plasticizers give flexibility to a wide range of consumer and medical plastic products. Among them, phthalate esters are recognized as endocrine disruptors that target male reproductive functions. With this notion, past studies designed and produced alternative plasticizers that could replace phthalates with limited toxicity to the environment and to male reproductive functions. Here, we focused on one reproductive cell type that was not investigated in past studies-spermatogonial stem cells (SSCs)-and examined in vitro the effects on 22 compounds (seven plasticizers currently in use and 15 newly synthesized potential alternative plasticizers) for their effects on SSCs. Our in vitro compound screening analyses showed that a majority of the compounds examined had a limited level of toxicity to SSCs. Yet, some commercial plasticizers and their derivatives, such as DEHP (di-(2-ethylhexyl) phthalate) and MEHP (mono-(2-ethylhexyl) phthalate), were detrimental at 10-5 to 10-4 M. Among new compounds, some of maleate- and fumarate-derivatives showed toxic effects. In contrast, no detrimental effects were detected with two new compounds, BDDB (1,4 butanediol dibenzoate) and DOS (dioctyl succinate). Furthermore, SSCs that were exposed to BDDB and DOS in vitro successfully established spermatogenic colonies in testes of recipient mice after transplantation. These results demonstrate that SSC culture acts as an effective platform for toxicological tests on SSC function and provide novel information that two new compounds, BDDB and DOS, are alternative plasticizers that do not have significant negative impacts on SSC integrity.

9.
J Cell Biol ; 221(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-35984332

ABSTRACT

Endocytosis is a multistep process involving the sequential recruitment and action of numerous proteins. This process can be divided into two phases: an early phase, in which sites of endocytosis are formed, and a late phase in which clathrin-coated vesicles are formed and internalized into the cytosol, but how these phases link to each other remains unclear. In this study, we demonstrate that anchoring the yeast Eps15-like protein Pan1p to the peroxisome triggers most of the events occurring during the late phase at the peroxisome. At this ectopic location, Pan1p recruits most proteins that function in the late phases-including actin nucleation promoting factors-and then initiates actin polymerization. Pan1p also recruited Prk1 kinase and actin depolymerizing factors, thereby triggering disassembly immediately after actin assembly and inducing dissociation of endocytic proteins from the peroxisome. These observations suggest that Pan1p is a key regulator for initiating, processing, and completing the late phase of endocytosis.


Subject(s)
Endocytosis , Microfilament Proteins , Peroxisomes , Saccharomyces cerevisiae Proteins , Actins/genetics , Actins/metabolism , Clathrin/genetics , Clathrin/metabolism , Endocytosis/genetics , Microfilament Proteins/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
Biochim Biophys Acta Biomembr ; 1864(4): 183858, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35031272

ABSTRACT

Tryptophan is a relatively rare amino acid whose influx is strictly controlled to meet cellular demands. The yeast Saccharomyces cerevisiae has two tryptophan permeases, namely Tat1 (low-affinity type) and Tat2 (high-affinity type). These permeases are differentially regulated through ubiquitination based on inducible conditions and dependence on arrestin-related trafficking adaptors, although the physiological significance of their degradation remain unclear. Here, we demonstrated that Tat2 was rapidly degraded in an Rsp5-Bul1-dependent manner upon the addition of tryptophan, phenylalanine, or tyrosine, whereas Tat1 was unaffected. The expression of the ubiquitination-deficient variant Tat25K>R led to a reduction in cell yield at 4 µg/mL tryptophan, suggesting the occurrence of an uncontrolled, excessive consumption of tryptophan at low tryptophan concentrations. Eisosomes are membrane furrows that are thought to be storage compartments for some nutrient permeases. Tryptophan addition caused rapid Tat2 dissociation from eisosomes, whereas Tat1 distribution was unaffected. The 5 K > R mutation had no marked effect on Tat2 dissociation, suggesting that dissociation is independent of ubiquitination. Interestingly, the D74R mutation, which was created within the N-terminal acidic patch, stabilized Tat2 while reducing the degree of partitioning into eisosomes. Moreover, the hyperactive I285V mutation in Tat2, which increases Vmax/Km for tryptophan import by 2-fold, reduced the degree of segregation into eisosomes. Our findings illustrate the coordinated activity of Tat1 and Tat2 in the regulation of tryptophan transport at various tryptophan concentrations and suggest the positive role of substrates in inducing a conformational transition in Tat2, resulting in its dissociation from eisosomes and subsequent ubiquitination-dependent degradation.


Subject(s)
Amino Acid Transport Systems/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Kinetics , Mutagenesis, Site-Directed , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Tryptophan/chemistry , Tryptophan/metabolism , Tyrosine/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination
11.
J Biol Chem ; 297(5): 101254, 2021 11.
Article in English | MEDLINE | ID: mdl-34592316

ABSTRACT

Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cell Membrane/metabolism , Microfilament Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transport Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Cell Membrane/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Microfilament Proteins/genetics , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transport Vesicles/genetics , Vesicular Transport Proteins/genetics
12.
PLoS One ; 16(5): e0251911, 2021.
Article in English | MEDLINE | ID: mdl-34015032

ABSTRACT

Spermatogenesis requires that a careful balance be maintained between the self-renewal of spermatogonial stem cells (SSCs) and their commitment to the developmental pathway through which they will differentiate into spermatozoa. Recently, a series of studies employing various in vivo and in vitro models have suggested a role of the wingless-related MMTV integration site gene family/beta-catenin (WNT/CTNNB1) pathway in determining the fate of SSCs. However, conflicting data have suggested that CTNNB1 signaling may either promote SSC self-renewal or differentiation. Here, we studied the effects of sustained CTNNB1 signaling in SSCs using the Ctnnb1tm1Mmt/+; Ddx4-CreTr/+ (ΔCtnnb1) mouse model, in which a stabilized form of CTNNB1 is expressed in all germ cells. ΔCtnnb1 mice were found to have reduced testis weights and partial germ cell loss by 4 months of age. Germ cell transplantation assays showed a 49% reduction in total functional SSC numbers in 8 month-old transgenic mice. In vitro, Thy1-positive undifferentiated spermatogonia from ΔCtnnb1 mice formed 57% fewer clusters, which was associated with decreased cell proliferation. A reduction in mRNA levels of genes associated with SSC maintenance (Bcl6b, Gfra1, Plzf) and increased levels for markers associated with progenitor and differentiating spermatogonia (Kit, Rarg, Sohlh1) were detected in these cluster cells. Furthermore, RNAseq performed on these clusters revealed a network of more than 900 genes regulated by CTNNB1, indicating that CTNNB1 is an important regulator of spermatogonial fate. Together, our data support the notion that CTNNB1 signaling promotes the transition of SSCs to undifferentiated progenitor spermatogonia at the expense of their self-renewal.


Subject(s)
Spermatogenesis/genetics , Spermatogonia/growth & development , Stem Cells/metabolism , beta Catenin/genetics , Adult Germline Stem Cells/pathology , Animals , Cell Proliferation/genetics , Gene Expression Regulation, Developmental/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Humans , Male , Mice , Promyelocytic Leukemia Zinc Finger Protein/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Spermatogonia/pathology , Stem Cells/pathology , Testis/growth & development , Testis/metabolism
13.
Cancer Sci ; 111(12): 4393-4404, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32976654

ABSTRACT

Cellular migration, coupled with the degradation of the extracellular matrix (ECM), is a key step in tumor invasion and represents a promising therapeutic target in malignant tumors. Focal adhesions (FAs) and invadopodia, which are distinct actin-based cellular structures, play key roles in cellular migration and ECM degradation, respectively. The molecular machinery coordinating the dynamics between FAs and invadopodia is not fully understood, although several lines of evidence suggest that the disassembly of FAs is an important step in triggering the formation of invadopodia. In a previous study, we identified the ZF21 protein as a regulator of both FA turnover and invadopodia-dependent ECM degradation. ZF21 interacts with multiple factors for FA turnover, including focal adhesion kinase (FAK), microtubules, m-Calpain, and Src homology region 2-containing protein tyrosine phosphatase 2 (SHP-2). In particular, the dephosphorylation of FAK by ZF21 is a key event in tumor invasion. However, the precise role of ZF21 binding to FAK remains unclear. We established a method to disrupt the interaction between ZF21 and FAK using the FAK-binding NH2 -terminal region of ZF21. Tumor cells expressing the ZF21-derived polypeptide had significantly decreased FA turnover, migration, invadopodia-dependent ECM degradation, and Matrigel invasion. Furthermore, the expression of the polypeptide inhibited an early step of experimental lung metastasis in mice. These findings indicate that the interaction of ZF21 with FAK is necessary for FA turnover as well as ECM degradation at the invadopodia. Thus, ZF21 is a potential regulator that coordinates the equilibrium between FA turnover and invadopodia activity by interacting with FAK.


Subject(s)
Cell Adhesion/physiology , Focal Adhesion Kinase 1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neoplasm Invasiveness , Animals , Cell Movement , Cell Proliferation , Extracellular Matrix/metabolism , Female , Gene Knockdown Techniques , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Podosomes/physiology
14.
Commun Biol ; 2: 419, 2019.
Article in English | MEDLINE | ID: mdl-31754649

ABSTRACT

Early endosomes, also called sorting endosomes, are known to mature into late endosomes via the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence is thought to be maintained by the continual fusion of transport vesicles from the plasma membrane and the trans-Golgi network (TGN). Here we show instead that endocytosis is dispensable and post-Golgi vesicle transport is crucial for the formation of endosomes and the subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all three proteins required for endosomal nucleotide exchange on Vps21p are first recruited to the TGN before transport to the endosome, namely the GEF Vps9p and the epsin-related adaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, with Vps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These results provide a different view of endosome formation and identify the TGN as a critical location for regulating progress through the endolysosomal trafficking pathway.


Subject(s)
Endosomes/metabolism , rab5 GTP-Binding Proteins/metabolism , trans-Golgi Network/metabolism , Biological Transport , Endocytosis , Fluorescent Antibody Technique , Fungal Proteins , Models, Biological , Mutation , Yeasts/genetics , Yeasts/metabolism
15.
Genesis ; 57(10): e23330, 2019 10.
Article in English | MEDLINE | ID: mdl-31386299

ABSTRACT

Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is expressed in the nucleus of spermatogonia in mice, suggesting a potential role in spermatogenesis. Here, we report the generation of a conditional knockout mouse model (Yapflox/flox ; Ddx4cre/+ ) that specifically inactivates Yap in the germ cells. The inactivation of Yap in spermatogonia was found to be highly efficient in this model. The loss of Yap in the germ cells had no observable effect on spermatogenesis in vivo. Histological examination of the testes showed no structural differences between mutant animals and age-matched Yapflox/flox controls, nor was any differences detected in gonadosomatic index, expression of germ cell markers or sperm counts. Cluster-forming assay using undifferentiated spermatogonia, including spermatogonial stem cells (SSCs), also showed that YAP is dispensable for SSC cluster formation in vitro. However, an increase in the expression of spermatogenesis and oogenesis basic helix-loop-helix 1 (Sohlh1) and neurogenin 3 (Ngn3) was observed in clusters derived from Yapflox/flox ; Ddx4cre/+ animals. Taken together, these results suggest that YAP fine-tunes the expression of genes associated with spermatogonial fate commitment, but that its loss is not sufficient to alter spermatogenesis in vivo.


Subject(s)
Proto-Oncogene Proteins c-yes/physiology , Spermatogenesis/physiology , Animals , Cells, Cultured , DEAD-box RNA Helicases/genetics , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-yes/genetics , Spermatogenesis/genetics , Spermatogonia/cytology , Spermatogonia/physiology
16.
J Biol Chem ; 294(20): 8273-8285, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30952699

ABSTRACT

Vacuolar-type H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for acidification of intracellular organelles and potential drug target. It is a multisubunit complex comprising a cytoplasmic V1 domain responsible for ATP hydrolysis and a membrane-embedded Vo domain that contributes to proton translocation across the membrane. Saccharomyces cerevisiae V-ATPase is composed of 14 subunits, deletion of any one of which results in well-defined growth defects. As the structure of V-ATPase and the function of each subunit have been well-characterized in yeast, this organism has been recognized as a preferred model for studies of V-ATPases. In this study, to assess the functional relatedness of the yeast and human V-ATPase subunits, we investigated whether human V-ATPase subunits can complement calcium- or pH-sensitive growth, acidification of the vacuolar lumen, assembly of the V-ATPase complex, and protein sorting in yeast mutants lacking the equivalent yeast genes. These assessments revealed that 9 of the 13 human V-ATPase subunits can partially or fully complement the function of the corresponding yeast subunits. Importantly, sequence similarity was not necessarily correlated with functional complementation. We also found that besides all Vo domain subunits, the V1 F subunit is required for proper assembly of the Vo domain at the endoplasmic reticulum. Furthermore, the human H subunit fully restored the level of vacuolar acidification, but only partially rescued calcium-sensitive growth, suggesting a specific role of the H subunit in V-ATPase activity. These findings provide important insights into functional homologies between yeast and human V-ATPases.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuolar Proton-Translocating ATPases , Vacuoles , Genetic Complementation Test , Humans , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/genetics , Vacuoles/metabolism
17.
PLoS One ; 14(1): e0210223, 2019.
Article in English | MEDLINE | ID: mdl-30682048

ABSTRACT

The small GTPases, Rab5 and Rab7, are key regulators at multiple stages of the endocytic/endolysosomal pathway, including fusion and maturation of endosomes. In yeast, Vps21p (Rab5 homolog) recruits a GEF for Rab7 and activates the downstream Ypt7p (Rab7 homolog) on endosomal membrane. Although the model of this sequential activation from Vps21p to Ypt7p in the endocytic pathway has been established, activation mechanism of Ypt7p in the Vps21p-independent pathway has not been completely clarified. Here we show that Ypt7p is activated and mediates vacuolar fusion in cells lacking all yeast Rab5 genes, VPS21, YPT52, and YPT53. We also demonstrate that deletion of both VPS21 and YPT7 genes cause severe defect in the AP-3 pathway as well as the CPY pathway although the AP-3 pathway is mostly intact in each vps21Δ or ypt7Δ mutant. Interestingly, in vps21Δ ypt7Δ mutant cargos trafficked via the VPS or endocytic pathway accumulate beside nucleus whereas cargo trafficked via the AP-3 pathway disperse in the cytosol. These findings suggest that Ypt7p is activated and plays a Rab5-independent role in the AP-3-mediated pathway.


Subject(s)
Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , rab GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Cell Membrane/genetics , Cytosol/metabolism , Endocytosis/genetics , Endosomes/genetics , Gene Deletion , Gene Expression Regulation, Fungal/genetics , Guanine Nucleotide Exchange Factors/genetics , Membrane Fusion/genetics , Phenotype , Signal Transduction/genetics , Vacuoles/genetics , Vacuoles/metabolism
18.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1566-1578, 2018 11.
Article in English | MEDLINE | ID: mdl-30077636

ABSTRACT

Clathrin-mediated endocytosis is an essential process that is mediated by the stepwise appearance or disappearance of many different proteins at the plasma membrane. In the budding yeast, these proteins are categorized into at least five modules, according to their spatiotemporal dynamics. Among them, the dynamics of proteins in the late coat module are well characterized, but those in the early coat module still remain unclear because of the lack of a suitable fluorescent marker with sufficient brightness to allow analysis. To examine the dynamics of early coat proteins, in this study we tagged four representative early coat proteins with 3GFP, and expressed them in a single cell. This cell exhibited a significant increase in the fluorescence intensity of early coat proteins relative to that of each 3GFP-tagged protein. Using this strain, we performed a detailed analysis of early coat proteins, including their precise lifetime, changes in fluorescence intensity, and motility on the plasma membrane. We found that early coat proteins move on the plasma membrane before internalization. Additionally, we expressed these 3GFP-tagged proteins in mutants with deletion of genes related to endocytosis, and found four mutants - end3Δ, las17Δ, sla2Δ, and clc1Δ- in which the lifetime of early coat proteins was markedly increased. Interestingly, deletion of the CLC1 gene dramatically reduced the internalization of early coat proteins whereas internalization of actin patches was largely unchanged, suggesting that the clc1Δ mutant might have a defect in the link between the early coat and actin modules.


Subject(s)
Clathrin/metabolism , Endocytosis , Fungal Proteins/metabolism , Molecular Imaging , Actins/metabolism , Fungal Proteins/genetics , Gene Deletion , Gene Expression , Genes, Reporter , Molecular Imaging/methods , Mutation
19.
J Cell Sci ; 131(1)2018 01 04.
Article in English | MEDLINE | ID: mdl-29192062

ABSTRACT

Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] in endocytosis but specific roles for phosphatidylinositol-4-phosphate [PtdIns(4)P], other than as the biosynthetic precursor of PtdIns(4,5)P2, have not been clarified. In this study we investigated the roles of PtdIns(4)P and PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the phosphatidylinositol 4-kinases (PI4-kinases) Stt4p and Pik1p and the 1-phosphatidylinositol-4-phosphate 5-kinase [PtdIns(4) 5-kinase] Mss4p. Quantitative analyses of endocytosis revealed that both the stt4tspik1ts and mss4ts mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4tspik1ts and mss4ts mutants revealed that PtdIns(4)P is required for the recruitment of the α-factor receptor Ste2p to clathrin-coated pits, whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p, Ent2p, Yap1801p and Yap1802p, is significantly impaired in the stt4tspik1ts mutant but not in the mss4ts mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Endocytosis , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , 1-Phosphatidylinositol 4-Kinase/genetics , Actins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Mutation , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Receptors, Mating Factor/genetics , Receptors, Mating Factor/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
20.
Endocrinology ; 158(11): 4000-4016, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28938460

ABSTRACT

Spermatogenesis is sustained by a heterogeneous population of spermatogonia that includes the spermatogonial stem cells. However, the mechanisms underlying their establishment from gonocyte embryonic precursors and their maintenance thereafter remain largely unknown. In this study, we report that inactivation of the ubiquitin ligase Huwe1 in male germ cells in mice led to the degeneration of spermatogonia in neonates and resulted in a Sertoli cell-only phenotype in the adult. Huwe1 knockout gonocytes showed a decrease in mitotic re-entry, which inhibited their transition to spermatogonia. Inactivation of Huwe1 in primary spermatogonial culture or the C18-4 cell line resulted in cell degeneration. Degeneration of Huwe1 knockout spermatogonia was associated with an increased level of histone H2AX and an elevated DNA damage response that led to apparent mitotic catastrophe but not apoptosis or senescence. Blocking this increase in H2AX prevented the degeneration of Huwe1-depleted cells. Taken together, these results reveal a previously undefined role of Huwe1 in orchestrating the physiological DNA damage response in the male germline that contributes to the establishment and maintenance of spermatogonia.


Subject(s)
Cell Differentiation/genetics , DNA Damage/genetics , Spermatogenesis/genetics , Spermatogonia/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Cells, Cultured , Down-Regulation/genetics , Gene Expression Regulation, Developmental , Male , Mice , Mice, Knockout , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...