Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38954566

ABSTRACT

Estimating blood pressure (BP) values from physiological signals (e.g., photoplethysmogram (PPG)) using deep learning models has recently received increased attention, yet challenges remain in terms of models' generalizability. Here, we propose taking a new approach by framing the problem as tracking the "changes" in BP over an interval, rather than directly estimating its value. Indeed, continuous monitoring of acute changes in BP holds promising implications for clinical applications (e.g., hypertensive emergencies). As a solution, we first present a self-contrastive masking (SCM) model, designed to perform pair-wise temporal comparisons within the input signal. We then leverage the proposed SCM model to introduce ΔBPNet, a model trained to detect elevations/drops greater than a given threshold in the systolic blood pressure (SBP) over an interval, from PPG. Using data from PulseDB, 1) we evaluate the performance of ΔBP-Net on previously unseen subjects, 2) we test ΔBP-Net's ability to generalize across domains by training and testing on different datasets, and 3) we compare the performance of ΔBP-Net with existing PPG-based BP-estimation models in detecting over-threshold SBP changes. Formulating the problem as a binary classification task (i.e., over-threshold SBP elevation/ drop or not), ΔBP-Net achieves 75.97%/73.19% accuracy on data from subjects unseen during training. Additionally, the proposed ΔBP-Net outperforms ΔSBP estimations derived from existing PPG-based BP-estimation methods. Overall, by shifting the focus from estimating the value of SBP to detecting overthreshold "changes" in SBP, this work introduces a new potential for using PPG in clinical BP monitoring, and takes a step forward in addressing the challenges related to the generalizability of PPG-based BP-estimation models.

2.
bioRxiv ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38712183

ABSTRACT

Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.

3.
J Neural Eng ; 21(3)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38621379

ABSTRACT

Objective.This paper presents data-driven solutions to address two challenges in the problem of linking neural data and behavior: (1) unsupervised analysis of behavioral data and automatic label generation from behavioral observations, and (2) extraction of subject-invariant features for the development of generalized neural decoding models.Approach. For behavioral analysis and label generation, an unsupervised method, which employs an autoencoder to transform behavioral data into a cluster-friendly feature space is presented. The model iteratively refines the assigned clusters with soft clustering assignment loss, and gradually improves the learned feature representations. To address subject variability in decoding neural activity, adversarial learning in combination with a long short-term memory-based adversarial variational autoencoder (LSTM-AVAE) model is employed. By using an adversary network to constrain the latent representations, the model captures shared information among subjects' neural activity, making it proper for cross-subject transfer learning.Main results. The proposed approach is evaluated using cortical recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium imaging during a motivational licking behavioral experiment. The results show that the proposed model achieves an accuracy of 89.7% in cross-subject neural decoding, outperforming other well-known autoencoder-based feature learning models. These findings suggest that incorporating an adversary network eliminates subject dependency in representations, leading to improved cross-subject transfer learning performance, while also demonstrating the effectiveness of LSTM-based models in capturing the temporal dependencies within neural data.Significance. Results demonstrate the feasibility of the proposed framework in unsupervised clustering and label generation of behavioral data, as well as achieving high accuracy in cross-subject neural decoding, indicating its potentials for relating neural activity to behavior.


Subject(s)
Choice Behavior , Animals , Mice , Choice Behavior/physiology , Neural Networks, Computer , Mice, Transgenic , Supervised Machine Learning , Unsupervised Machine Learning
4.
Article in English | MEDLINE | ID: mdl-38635385

ABSTRACT

Timely diagnosis of mild traumatic brain injury (mTBI) remains challenging due to the rapid recovery of acute symptoms and the absence of evidence of injury in static neuroimaging scans. Furthermore, while longitudinal tracking of mTBI is essential in understanding how the diseases progresses/regresses over time for enhancing personalized patient care, a standardized approach for this purpose is not yet available. Recent functional neuroimaging studies have provided evidence of brain function alterations following mTBI, suggesting mTBI-detection models can be built based on these changes. Most of these models, however, rely on manual feature engineering, but the optimal set of features for detecting mTBI may be unknown. Data-driven approaches, on the other hand, may uncover hidden relationships in an automated manner, making them suitable for the problem of mTBI detection. This paper presents a data-driven framework based on Siamese Convolutional Neural Network (SCNN) to detect mTBI and to monitor the recovery state from mTBI over time. The proposed framework is tested on the cortical images of Thy1-GCaMP6s mice, obtained via widefield calcium imaging, acquired in a longitudinal study. Results show that the proposed model achieves a classification accuracy of 96.5%. To track the state of the injured brain over time, a reference distance map is constructed, which together with the SCNN model, are employed to assess the recovery state in subsequent sessions after injury, revealing that the recovery progress varies among subjects. The promising results of this work suggest that a similar approach could be potentially applicable for monitoring recovery from mTBI, in humans.


Subject(s)
Algorithms , Brain Concussion , Neural Networks, Computer , Recovery of Function , Brain Concussion/diagnostic imaging , Brain Concussion/diagnosis , Brain Concussion/physiopathology , Animals , Mice , Deep Learning , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL