Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Langmuir ; 40(13): 7178-7191, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38506447

The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and ßCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.

2.
Adv Healthc Mater ; 13(10): e2302607, 2024 Apr.
Article En | MEDLINE | ID: mdl-38118064

Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.


Hydrogels , Mesenchymal Stem Cells , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Signal Transduction , Extracellular Matrix , Elastic Modulus
3.
J Phys Chem Lett ; 14(49): 11235-11241, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38060373

This work investigates the water fraction dependence of the aggregation behavior of hydrophobic solutes in water-tetrahydrofuran (THF) and the elucidation of the role of THF using fluorescence microscopy, dynamic light scattering, neutron and X-ray scattering, and photoluminescence measurements. On the basis of the obtained results, the following model is proposed: hydrophobic molecules are molecularly dispersed in the low-water-content region (10-20 vol %), while they form mesoscopic particles upon increasing the water fraction to ∼30 vol %. This abrupt change is due to the composition fluctuation of the water-THF binary system to form hydrophobic areas in THF, followed by THF-rich droplets where hydrophobic solutes are incorporated and form loose aggregates. Further increasing the water content prompts the desolvation of THF, which decreases the particle size and generates tight aggregates of solute molecules. This model is consistent with the luminescence behavior of the solutes and will be helpful to control the aggregation state of hydrophobic solutes in various applications.

4.
Int J Biol Macromol ; 244: 125481, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37343612

In the past decades, the microencapsulation of mammalian cells into microparticles has been extensively studied for various in vitro and in vivo applications. The aim of this study was to demonstrate the viability of bacterial polyglucuronic acid (PGU), an exopolysaccharide derived from bacteria and composed of glucuronic acid units, as an effective material for cell microencapsulation. Using the method of dropping an aqueous solution of PGU-containing cells into a Ca2+-loaded solution, we produced spherical PGU microbeads with >93 % viability of the encapsulated human hepatoma HepG2 cells. Hollow-core microcapsules were formed via polyelectrolyte complex layer formation of PGU and poly-l-lysine, after which Ca2+, a cross-linker of PGU, was chelated, and this was accomplished by sequential immersion of microbeads in aqueous solutions of poly-l-lysine and sodium citrate. The encapsulated HepG2 cells proliferated and formed cell aggregates within the microparticles over a 14-day culture, with significantly larger aggregates forming within the microcapsules. Our results provide evidence for the viability of PGU for cell microencapsulation for the first time, thereby contributing to advancements in tissue engineering.


Polylysine , Tissue Engineering , Animals , Humans , Capsules , Microspheres , Alginates , Glucuronic Acid , Hexuronic Acids , Mammals
5.
Polymers (Basel) ; 15(9)2023 May 05.
Article En | MEDLINE | ID: mdl-37177345

Ruthenium(II)-catalyzed azide-alkyne cycloaddition (RuAAC) polymerization of t-butyl 4-azido-5-hexynoate (tBuAH), i.e., a heterobifunctional monomer carrying azide and alkyne moieties, was investigated in this study. RuAAC of the monofunctional precursors of tBuAH yielded a dimer possessing a 1,5-disubstituted 1,2,3-triazole moiety. 1H NMR data showed that the dimer was a mixture of diastereomers. Polymerization of tBuAH using ruthenium(II) (Ru(II)) catalysts produced oligomers of Mw ≈ (2.7-3.6) × 103 consisting of 1,5-disubstituted 1,2,3-triazole units (1,5-units) as well as 1,4-disubstituted 1,2,3-triazole units (1,4-units). The fractions of 1,5-unit (f1,5) were roughly estimated to be ca. 0.8 by comparison of signals of the methine and triazole protons in 1H NMR spectra, indicating that RuAAC proceeded preferentially and thermal Huisgen cycloaddition (HC) somehow took place during the polymerization. The oligomer samples obtained were also characterized by solubility test, size exclusion chromatography (SEC), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). The UV-Vis and TGA data indicated that the oligomer samples contained a substantial amount of Ru(II) catalysts. To the best of our knowledge, this is the first report on dense 1,2,3-triazole oligomers consisting of 1,5-units linked via a carbon atom.

6.
Soft Matter ; 19(14): 2491-2504, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36942886

The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.

7.
RSC Adv ; 13(6): 4089-4095, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36756559

To realize sustainable societies, the production of organic compounds not based on fossil resources should be developed. Thus, C1 chemistry, utilizing one-carbon compounds as starting materials, has been of increasing importance. In particular, the formose reaction is promising because the reaction produces sugars (monosaccharides) from formaldehyde under basic conditions. On the other hand, since microwave (MW) induces the rotational motion of molecules, MW irradiation often improves the selectivity and efficiency of reactions. In this study, the formose reaction under MW irradiation was thus investigated under various conditions. The formose reaction proceeded very fast using 1.0 mol per kg formaldehyde and 55 mmol per kg calcium hydroxide (Ca(OH)2) as a catalyst at a high set temperature (150 °C) for a short time (1 min) to form preferentially specific hexose and heptose. The major products were isolated by thin layer chromatography and characterized by mass spectroscopy and NMR. These characterization data elucidated that the hexose and heptose were 2-hydroxymethyl-1,2,4,5-tetrahydroxy-3-pentanone (C6*) and 2,4-bis(hydroxymethyl)-1,2,4,5-tetrahydroxy-3-pentanone (C7*), respectively. On the basis of these observations, as well as density functional theory calculations, a plausible reaction pathway was also discussed; once 1,3-dihydroxyacetone is formed, consecutive aldol reactions favorably occur to form C6* and C7*.

8.
Nanoscale Adv ; 4(23): 5027-5036, 2022 Nov 22.
Article En | MEDLINE | ID: mdl-36504747

Stimuli-responsive polyelectrolyte brushes adapt their physico-chemical properties according to pH and ion concentrations of the solution in contact. We synthesized a poly(acrylic acid) bearing cysteine residues at side chains and a lipid head group at the terminal, and incorporated them into a phospholipid monolayer deposited on a hydrophobic silane monolayer. The ion-specific, nanoscale response of polyelectrolyte brushes was detected by using three-dimensional scanning force microscopy (3D-SFM) combined with frequency modulation detection. The obtained topographic and mechanical landscapes indicated that the brushes were uniformly stretched, undergoing a gradual transition from the brush to the bulk electrolyte in the absence of divalent cations. When 1 mM calcium ions were added, the brushes were uniformly compacted, exhibiting a sharper brush-to-bulk transition. Remarkably, the addition of 1 mM cadmium ions made the brush surface significantly rough and the mechanical landscape highly heterogeneous. Currently, cadmium-specific nanoscale compaction of the brushes is attributed to the coordination of thiol and carboxyl side chains with cadmium ions, as suggested for naturally occurring, heavy metal binding proteins.

9.
Gels ; 8(12)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36547342

In the field of tissue engineering, fibroblast growth factor-2 (FGF-2) effectively regenerates damaged tissue and restores its biological function. However, FGF-2 readily diffuses and degrades under physiological conditions. Therefore, methods for the sustained and localized delivery of FGF-2 are needed. Drug delivery systems using hydrogels as carriers have attracted significant interest. Injectable hydrogels with an affinity for FGF-2 are candidates for FGF-2 delivery systems. In this study, we fabricated a hydrogel from phenol-grafted alginate sulfate (AlgS-Ph) and investigated its application to the delivery of FGF-2. The hydrogel was prepared under mild conditions via horseradish peroxidase (HRP)-mediated cross-linking. Surface plasmon resonance (SPR) measurements show that the AlgS-Ph hydrogel has an affinity for FGF-2 in accordance with its degree of sulfation. Conditions for the preparation of the AlgS-Ph hydrogel, including HRP and H2O2 concentrations, are optimized so that the hydrogel can be used as an injectable drug carrier. The hydrogel shows no cytotoxicity when using 10T1/2 cells as a model cell line. The angiogenesis assay shows that FGF-2 released from the AlgS-Ph hydrogel promotes the formation of blood vessels. These results indicate that the AlgS-Ph hydrogel is a suitable candidate for the FGF-2 carrier.

10.
Polymers (Basel) ; 14(20)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36297985

Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young's modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host-guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young's modulus between 2-3 kPa and 0.2-0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.

11.
Biofabrication ; 15(1)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36170845

Non-adherent cells, such as hematopoietic cells and lymphocytes, are important research subjects in medical and biological fields. Therefore, a system that enables the handling of non-adherent cells in solutions in the same manner as that of adhering cells during medium exchange, exposure to chemicals, washing, and staining in imaging applications would be useful. Here, we report a 'Cell Dome' platform in which non-adherent cells can be enclosed and grown in the cavities of about 1 mm diameter and 270µm height. The domes consist of an alginate-based hydrogel shell of 90µm thickness. Cell Domes were formed on glass plates by horseradish peroxidase-mediated cross-linking. Human leukaemia cell line K562 cells enclosed in Cell Domes were stable for 29 days with every 2-3 days of medium change. The enclosed cells grew in the cavities and were stained and differentiated with reagents supplied from the surrounding medium. Additionally, K562 cells that filled the cavities (a 3D microenvironment) were more hypoxic and highly resistant to mitomycin C than those cultured in 2D. These findings demonstrate that the 'Cell Dome' may be a promising tool for conveniently culturing and evaluating non-adherent cells.


Hydrogels , Mitomycin , Humans , Alginates/metabolism , Horseradish Peroxidase
12.
Mater Today Bio ; 15: 100328, 2022 Jun.
Article En | MEDLINE | ID: mdl-35774197

Engineering the surfaces of biological organisms allows the introduction of novel functions and enhances their native functions. However, studies on surface engineering remained limited to unicellular organisms. Herein, nematode surfaces are engineered through in situ hydrogelation mediated by horseradish peroxidase (HRP) anchored to nematode cuticles. With this method, hydrogel sheaths of approximately 10-µm thickness are fabricated from a variety of polysaccharides, proteins, and synthetic polymers. Caenorhabditis elegans and Anisakis simplex coated with a hydrogel sheath showed a negligible decrease in viability, chemotaxis and locomotion. Hydrogel sheaths containing UV-absorbable groups and catalase functioned as shields to protect nematodes from UV and hydrogen peroxide, respectively. The results also showed that hydrogel sheaths containing glucose oxidase have the potential to be used as living drug delivery systems for cancer therapy. The nematode functionalization method developed in this study has the potential to impact a wide range of fields from agriculture to medicine.

13.
Soft Matter ; 18(26): 4953-4962, 2022 Jul 06.
Article En | MEDLINE | ID: mdl-35748314

Supramolecular hydrogels utilizing host-guest interactions (HG gels) exhibit large deformability and pronounced viscoelasticity. The inclusion complexes between ß-cyclodextrin (host) and adamantane (guest) units on the water-soluble polymers form transient bonds. The HG gels show significant stress relaxation with finite equilibrium stress following the step strain. The stress relaxation process reflects the detachment dynamics of the transient bonds which sustain the initial stress, while the finite equilibrium stress is preserved by the permanent topological cross-links with a rotaxane structure. Nonlinear stress relaxation experiments in biaxial stretching with various combinations of two orthogonal strains unambiguously reveal that time and strain effects on stress are not separable. The relaxation is accelerated for a short time frame (<102 s) with an increase in the magnitude of strain, whereas it is retarded for a longer time window with an increase in the anisotropy of the imposed biaxial strain. The time-strain inseparability in the HG gels is in contrast to the simple nonlinear viscoelasticity of a dual cross-link gel with covalent and transient cross-links in which the separability was previously validated by the same assessment. We currently interpret that the significant susceptibility of the detachment dynamics to the deformation type results from the structural characteristics of the HG gels, i.e., the host and guest moieties covalently connected to the network chains, the considerably low concentrations (<0.1 M) of these moieties, and the slidability of the permanent rotaxane cross-links.

14.
Macromol Biosci ; 22(6): e2200055, 2022 06.
Article En | MEDLINE | ID: mdl-35429097

Mucin-containing bio-synthetic hybrid hydrogel is successfully formed under physiological conditions upon mixing aqueous solutions of native mucin and synthetic polymers carrying boronic acids. The mechanical properties and stability of the hydrogel in physiological solutions, e.g., cell culture media, are tunable depending on the boronic acid content of polymers. The hydrogel dissolved in the physiological solutions releases native mucin and boronic acid-containing polymer, which can control the adhesion of mammalian cells to the surface.


Boronic Acids , Hydrogels , Animals , Mammals , Mucins , Polymers , Tissue Adhesions
15.
Cells ; 11(5)2022 03 03.
Article En | MEDLINE | ID: mdl-35269503

The cell cycle is known to be regulated by features such as the mechanical properties of the surrounding environment and interaction of cells with the adhering substrates. Here, we investigated the possibility of regulating cell-cycle progression of the cells on gelatin/hyaluronic acid composite hydrogels obtained through hydrogen peroxide (H2O2)-mediated cross-linking and degradation of the polymers by varying the exposure time to H2O2 contained in the air. The stiffness of the hydrogel varied with the exposure time. Human cervical cancer cells (HeLa) and mouse mammary gland epithelial cells (NMuMG) expressing cell-cycle reporter Fucci2 showed the exposure-time-dependent different cell-cycle progressions on the hydrogels. Although HeLa/Fucci2 cells cultured on the soft hydrogel (Young's modulus: 0.20 and 0.40 kPa) obtained through 15 min and 120 min of the H2O2 exposure showed a G2/M-phase arrest, NMuMG cells showed a G1-phase arrest. Additionally, the cell-cycle progression of NMuMG cells was not only governed by the hydrogel stiffness, but also by the low-molecular-weight HA resulting from H2O2-mediated degradation. These results indicate that H2O2-mediated cross-linking and degradation of gelatin/hyaluronic acid composite hydrogel could be used to control the cell adhesion and cell-cycle progression.


Hydrogels , Hydrogen Peroxide , Adhesives , Animals , Gelatin/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogen Peroxide/metabolism , Mice
16.
Carbohydr Polym ; 277: 118820, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34893237

In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.


Bioprinting , Glucuronic Acid/chemistry , Ink , Polymers/chemistry , Animals , Cell Line , Glucuronic Acid/chemical synthesis , Glucuronic Acid/isolation & purification , Mice , Molecular Structure , Polymers/chemical synthesis , Polymers/isolation & purification
17.
Polymers (Basel) ; 13(9)2021 Apr 23.
Article En | MEDLINE | ID: mdl-33922859

Three-dimensional bioprinting has attracted much attention for biomedical applications, including wound dressing and tissue regeneration. The development of functional and easy-to-handle inks is expected to expand the applications of this technology. In this study, aqueous solutions of chitosan derivatives containing sodium persulfate (SPS) and Tris(2,2'-bipyridyl) ruthenium(II) chloride (Ru(bpy)3) were applied as inks for both extrusion-based and vat polymerization-based bioprinting. In both the printing systems, the curation of ink was caused by visible light irradiation. The gelation time of the solution and the mechanical properties of the resultant hydrogels could be altered by changing the concentrations of SPS and Ru(bpy)3. The 3D hydrogel constructs with a good shape fidelity were obtained from the chitosan inks with a composition that formed gel within 10 s. In addition, we confirmed that the chitosan hydrogels have biodegradability and antimicrobial activity. These results demonstrate the significant potential of using the visible light-curable inks containing a chitosan derivative for extrusion and vat polymerization-based bioprinting toward biomedical applications.

18.
ACS Omega ; 5(33): 21254-21259, 2020 Aug 25.
Article En | MEDLINE | ID: mdl-32875262

Gelatin-based water-insoluble nanofibers with a diameter of 160 nm were obtained from electrospinning aqueous solutions containing gelatin with phenolic hydroxyl (Ph) moieties (Gelatin-Ph) and horseradish peroxidase (HRP). The water insolubility of the nanofibers was accomplished through HRP-catalyzed cross-linking of the Ph moieties by exposing the electrospun nanofibers to air containing hydrogen peroxide. The HRP activity in the electrospun nanofibers was 65% that of native HRP. The cytocompatibility necessary for tissue engineering applications of the water-insoluble Gelatin-Ph nanofibers was confirmed by the adhesion and viability of human embryonic kidney-derived HEK293 cells.

19.
Sci Adv ; 6(39)2020 09.
Article En | MEDLINE | ID: mdl-32967835

Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between ß-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.

20.
Int J Bioprint ; 6(1): 250, 2020.
Article En | MEDLINE | ID: mdl-32596552

We report an extrusion-based bioprinting approach, in which stabilization of extruded bioink is achieved through horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2O2) supplied from HRP and glucose. The bioinks containing living cells, HRP, glucose, alginate possessing phenolic hydroxyl (Ph) groups, and cellulose nanofiber were extruded to fabricate 3D hydrogel constructs. Lattice- and human nose-shaped 3D constructs were successfully printed and showed good stability in cell culture medium for over a week. Mouse 10T1/2 fibroblasts enclosed in the printed constructs remained viable after 7 days of culture. It was also able to switch a non-cell-adhesive surface of the printed construct to cell-adhesive surface for culturing cells on it through a subsequent cross-linking of gelatin possessing Ph moieties. These results demonstrate the possibility of utilizing the presented cross-linking method for 3D bioprinting.

...