Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 262: 108773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723845

ABSTRACT

Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 µM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.


Subject(s)
Antiprotozoal Agents , Cell Cycle Checkpoints , DNA Damage , Diterpenes , Giardia lamblia , Inhibitory Concentration 50 , Reactive Oxygen Species , Trophozoites , Diterpenes/pharmacology , Giardia lamblia/drug effects , Giardia lamblia/growth & development , Giardia lamblia/genetics , Trophozoites/drug effects , Trophozoites/growth & development , Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Antiprotozoal Agents/pharmacology , Humans , Animals , Gene Expression/drug effects , Metronidazole/pharmacology
2.
PLoS Pathog ; 11(3): e1004666, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25730114

ABSTRACT

The protozoan parasite Entamoeba histolytica causes a wide spectrum of intestinal infections. In severe cases, the trophozoites can breach the mucosal barrier, invade the intestinal epithelium and travel via the portal circulation to the liver, where they cause hepatic abscesses, which can prove fatal if left untreated. The host Extra Cellular Matrix (ECM) plays a crucial role in amoebic invasion by triggering an array of cellular responses in the parasite, including induction of actin rich adhesion structures. Similar actin rich protrusive structures, known as 'invadosomes', promote chemotactic migration of the metastatic cancer cells and non-transformed cells by remodeling the ECM. Recent studies showed a central role for Rab GTPases, the master regulators of vesicular trafficking, in biogenesis of invadosomes. Here, we showed that fibronectin, a major host ECM component induced actin remodeling in the parasite in a Rab21 dependent manner. The focalized actin structures formed were reminiscent of the mammalian invadosomes. By using various approaches, such as immunofluorescence confocal microscopy and scanning electron microscopy, along with in vitro invasion assay and matrix degradation assay, we show that the fibronectin induced formation of amoebic actin dots depend on the nucleotide status of the GTPase. The ECM components, fibronectin and collagen type I, displayed differential control over the formation of actin dots, with fibronectin positively and collagen type I negatively modulating it. The cell surface adhesion molecule Gal/GalNAc complex was also found to impose additional regulation on this process, which might have implication in collagen type I mediated suppression of actin dots.


Subject(s)
Actins/metabolism , Entamoeba histolytica , Fibronectins/metabolism , Protozoan Proteins , rab GTP-Binding Proteins , Entamoeba histolytica/enzymology , Entamoeba histolytica/genetics , Entamoeba histolytica/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trophozoites/enzymology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL