Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
PLoS One ; 19(5): e0301780, 2024.
Article in English | MEDLINE | ID: mdl-38820409

ABSTRACT

Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load. We find that treatment efficacy and baseline patient or viral features are not the sole determinant of outcome. We found patients with enhanced innate or adaptive immune responses can experience poor viral control, resolution of infection or non-infectious inflammatory injury depending on treatment efficacy and initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation despite effective viral control. Adaptive immune responses may be inhibited by very early effective therapy, resulting in viral load rebound after cessation of therapy. Our model suggests individual disease course may be influenced by the interaction between external and patient-intrinsic factors. These data have implications for the reproducibility of clinical trial cohorts and timing of optimal treatment.


Subject(s)
COVID-19 , Models, Theoretical , SARS-CoV-2 , Viral Load , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adaptive Immunity , Immunity, Innate , COVID-19 Drug Treatment
2.
Cell Rep Med ; 5(3): 101436, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508146

ABSTRACT

This study introduces a tailored COVID-19 model for patients with cancer, incorporating viral variants and immune-response dynamics. The model aims to optimize vaccination strategies, contributing to personalized healthcare for vulnerable groups.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Vaccination
3.
J Allergy Clin Immunol Glob ; 3(2): 100234, 2024 May.
Article in English | MEDLINE | ID: mdl-38544577

ABSTRACT

Background: Patients with predominantly antibody deficiency (PAD) have lower anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antibody levels after initial 2-dose SARS-CoV-2 vaccination than healthy controls do; however, the anti-spike antibody responses and neutralization function in patients with PAD following subsequent immunizations remain understudied. Objective: We sought to characterize anti-spike antibody responses in adults with PAD over the course of 5 SARS-CoV-2 vaccine doses and identify diagnostic and immunophenotypic risk factors for low antibody response. Methods: We evaluated anti-spike antibody levels in 117 adult patients with PAD and 192 adult healthy controls following a maximum of 5 SARS-CoV-2 immunizations. We assessed neutralization of the SARS-CoV-2 wild-type strain and the Omicron BA.5 variant and analyzed infection outcomes. Results: The patients with PAD had significantly lower mean anti-spike antibody levels after 3 SARS-CoV-2 vaccine doses than the healthy controls did (1,439.1 vs 21,890.4 U/mL [P < .0001]). Adults with secondary PAD, severe primary PAD, and high-risk immunophenotypes had lower mean anti-spike antibody levels following vaccine doses 2, 3, and/or 4 but not following vaccine dose 5. Compared with patients with mild and moderate PAD, patients with severe PAD had a higher rate of increase in anti-spike antibody levels over 5 immunizations. A strong positive correlation was observed between anti-spike antibody levels and neutralization of both the SARS-CoV-2 wild-type strain and the Omicron BA.5 variant. Most infections were managed on an outpatient basis. Conclusions: In all of the patients with PAD, anti-spike antibody levels increased with successive SARS-CoV-2 immunizations and were correlated with neutralization of both the SARS-CoV-2 wild-type strain and the Omicron BA.5 variant. Secondary PAD, severe primary PAD, and high-risk immunophenotypes were correlated with lower mean anti-spike antibody levels following vaccine doses 2 through 4. Patients with severe PAD had the highest rate of increase in anti-spike antibody levels over 5 immunizations. These data suggest a clinical benefit to sequential SARS-CoV-2 immunizations, particularly among high-risk patients with PAD.

4.
Elife ; 132024 01 15.
Article in English | MEDLINE | ID: mdl-38224499

ABSTRACT

The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.


Subject(s)
Genetic Predisposition to Disease , Tuberculosis , Humans , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Tuberculosis/genetics , Racial Groups/genetics
5.
Sci Transl Med ; 15(724): eadh4529, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38019932

ABSTRACT

Individuals with primary and pharmacologic B cell deficiencies have high rates of severe disease and mortality from coronavirus disease 2019 (COVID-19), but the immune responses and clinical outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination have yet to be fully defined. Here, we evaluate the cellular immune responses after both SARS-CoV-2 infection and vaccination in patients receiving the anti-CD20 therapy rituximab (RTX) and those with low B cell counts due to common variable immune deficiency (CVID) disease. Assessment of effector and memory CD4+ and CD8+ T cell responses to SARS-CoV-2 revealed elevated reactivity and proliferative capacity after both infection and vaccination in B cell-deficient individuals, particularly within the CD8+ T cell compartment, in comparison with healthy controls. Evaluation of clinical outcomes demonstrates that vaccination of RTX-treated individuals was associated with about 4.8-fold reduced odds of moderate or severe COVID-19 in the absence of vaccine-induced antibodies. Analysis of T cell differentiation demonstrates that RTX administration increases the relative frequency of naïve CD8+ T cells, potentially by depletion of CD8+CD20dim T cells, which are primarily of an effector memory or terminal effector memory (TEMRA) phenotype. However, this also leads to a reduction in preexisting antiviral T cell immunity. Collectively, these data indicate that individuals with B cell deficiencies have enhanced T cell immunity after both SARS-CoV-2 infection and vaccination that potentially accounts for reduced hospitalization and severe disease from subsequent SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , Vaccination , Antibodies, Viral
6.
Pigment Cell Melanoma Res ; 36(5): 378-387, 2023 09.
Article in English | MEDLINE | ID: mdl-37390098

ABSTRACT

Mucosal melanoma (MM) is a rare subtype of melanoma with an aggressive clinical course. In cutaneous melanoma (CM), the absence of pigmentation and presence of NRAS/KRAS mutations are biomarkers indicating an aggressive clinical course with shorter overall survival. Similar data for MM are missing. We present the real-world outcome data in a cohort of genotyped MM patients and assessed the prognostic relevance of pigmentation- and NRAS/KRAS mutation status. We correlated pathological reports and clinical data with overall survival of patients with MM. Furthermore, we performed clinically integrated molecular genotyping and analyzed real world treatment regimens for covariates associated with clinical outcome. We identified 39 patients with available clinical and molecular data. Patients with amelanotic MM had a significantly shorter overall survival (p = .003). In addition, the presence of a NRAS or KRAS mutation was significantly associated with poor overall survival (NRAS or KRAS p = .024). Currently, it is unknown if the same prognostic relevance for the lack of pigmentation and RAS mutations in CM, exists in MM. Here we analyzed a cohort of MM for outcome measures and determined that two known prognostic biomarkers for CM are in fact novel prognosticators for MM.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/therapy , Skin Neoplasms/therapy , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics , Biomarkers , Mutation/genetics , Disease Progression , Proto-Oncogene Proteins B-raf/genetics , Melanoma, Cutaneous Malignant
7.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Article in English | MEDLINE | ID: mdl-37264229

ABSTRACT

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Subject(s)
Killer Cells, Natural , Protein Sorting Signals , Humans , Histocompatibility Antigens Class I , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Lectins, C-Type/metabolism , Receptors, Natural Killer Cell/metabolism , HLA-E Antigens
8.
Nat Genet ; 55(5): 807-819, 2023 05.
Article in English | MEDLINE | ID: mdl-37024582

ABSTRACT

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade. Taken together, results from this cohort demonstrate the complexity of biological determinants underlying immunotherapy outcomes and reinforce the discovery potential of integrative analysis within large, well-curated, cancer-specific cohorts.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Transcriptome/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/therapeutic use , Genomics
9.
Pediatr Infect Dis J ; 42(6): 520-527, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36977187

ABSTRACT

BACKGROUND: The neutrophil-to-lymphocyte-ratio (NLR), neutrophil-to-monocyte-plus-lymphocyte-ratio (NMLR) and monocyte-to-lymphocyte-ratio (MLR) may have diagnostic potential for tuberculosis (TB). METHODS: Data of two prospective multicenter studies in Switzerland were used, which included children <18 years with TB exposure, infection or disease or with febrile non-TB lower-respiratory-tract infection (nTB-LRTI). RESULTS: Of the 389 children included 25 (6.4%) had TB disease, 12 (3.1%) TB infection, 28 (7.2%) were healthy TB exposed and 324 (83.3%) nTB-LRTI. Median (IQR) NLR was highest with 2.0 (1.2, 2.2) in children with TB disease compared to TB exposed [0.8 (0.6, 1.3); P = 0.002] and nTB-LRTI [0.3 (0.1, 1.0); P < 0.001]. Median (IQR) NMLR was highest with 1.4 (1.2, 1.7) in children with TB disease compared to healthy exposed [0.7 (0.6, 1.1); P = 0.003] and children with nTB-LRTI [0.2 (0.1, 0.6); P < 0.001). Receiver operating characteristic curves to detect TB disease compared to nTB-LRTI for NLR and NMLR had an area under the curve of 0.82 and 0.86, the sensitivity of 88% and 88%, and specificity of 71% and 76%, respectively. CONCLUSION: NLR and NMLR are promising, easy-to-obtain diagnostic biomarkers to differentiate children with TB disease from other lower respiratory tract infections. These results require validation in a larger study and in settings with high and low TB endemicity.


Subject(s)
Respiratory Tract Infections , Tuberculosis , Humans , Child , Monocytes , Neutrophils , Prospective Studies , Lymphocytes , Tuberculosis/diagnosis , Biomarkers , Retrospective Studies
11.
medRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798349

ABSTRACT

IL-6 responses are ubiquitous in Mycobacterium tuberculosis (Mtb) infections, but their role in determining human tuberculosis (TB) disease risk is unknown. We used single nucleotide polymorphisms (SNPs) in and near the IL-6 receptor (IL6R) gene, focusing on the non-synonymous variant, rs2228145, associated with reduced classical IL-6 signalling, to assess the effect of altered IL-6 activity on TB disease risk. We identified 16 genome wide association studies (GWAS) of TB disease collating 17,982 cases of TB disease and 972,389 controls across 4 continents. Meta-analyses and Mendelian randomisation analyses revealed that reduced classical IL-6 signalling was associated with lower odds of TB disease, a finding replicated using multiple, independent SNP instruments and 2 separate exposure variables. Our findings establish a causal relationship between IL-6 signalling and the outcome of Mtb infection, suggesting IL-6 antagonists do not increase the risk of TB disease and should be investigated as adjuncts in treatment.

12.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623200

ABSTRACT

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
13.
Nat Med ; 28(12): 2592-2600, 2022 12.
Article in English | MEDLINE | ID: mdl-36526722

ABSTRACT

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Subject(s)
Interleukin-7 , Melanoma , Humans , Interleukin-7/genetics , Interleukin-7/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Melanoma/drug therapy , Melanoma/genetics , CD8-Positive T-Lymphocytes , Genetic Variation
14.
Nat Med ; 28(12): 2584-2591, 2022 12.
Article in English | MEDLINE | ID: mdl-36526723

ABSTRACT

Immune checkpoint inhibitors (ICIs) have yielded remarkable responses but often lead to immune-related adverse events (irAEs). Although germline causes for irAEs have been hypothesized, no individual variant associated with developing irAEs has been identified. We carried out a genome-wide association study of 1,751 patients on ICIs across 12 cancer types. We investigated two irAE phenotypes: (1) high-grade (3-5) and (2) all-grade events. We identified 3 genome-wide significant associations (P < 5 × 10-8) in the discovery cohort associated with all-grade irAEs: rs16906115 near IL7 (combined P = 3.6 × 10-11; hazard ratio (HR) = 2.1); rs75824728 near IL22RA1 (combined P = 3.5 × 10-8; HR = 1.8); and rs113861051 on 4p15 (combined P = 1.2 × 10-8, HR = 2.0); rs16906115 was replicated in 3 independent studies. The association near IL7 colocalized with the gain of a new cryptic exon for IL7, a critical regulator of lymphocyte homeostasis. Patients carrying the IL7 germline variant exhibited significantly increased lymphocyte stability after ICI initiation, which was itself predictive of downstream irAEs and improved survival.


Subject(s)
Genome-Wide Association Study , Immune Checkpoint Inhibitors , Interleukin-7 , Cognition , Germ Cells , Retrospective Studies
15.
Ther Adv Med Oncol ; 14: 17588359221119370, 2022.
Article in English | MEDLINE | ID: mdl-36051470

ABSTRACT

Purpose: To explore the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with breast cancer based on type of anticancer treatment. Methods: Patients with breast cancer had anti-spike antibody concentrations measured ⩾14 days after receiving a full SARS-CoV-2 vaccination series. The primary endpoint was IgA/G/M anti-spike antibody concentration. Multiple regression analysis was used to analyze log10-transformed antibody titer concentrations. Results: Between 29 April and 20 July 2021, 233 patients with breast cancer were enrolled, of whom 212 were eligible for the current analysis. Patients who received mRNA-1273 (Moderna) had the highest antibody concentrations [geometric mean concentration (GMC) in log10: 3.0 U/mL], compared to patients who received BNT162b2 (Pfizer) (GMC: 2.6 U/mL) (multiple regression adjusted p = 0.013) and Ad26.COV2.S (Johnson & Johnson/Janssen) (GMC: 2.6 U/mL) (p = 0.071). Patients receiving cytotoxic therapy had a significantly lower antibody titer GMC (2.5 U/mL) compared to patients on no therapy or endocrine therapy alone (3.0 U/mL) (p = 0.005). Patients on targeted therapies (GMC: 2.7 U/mL) also had a numerically lower GMC compared to patients not receiving therapy/on endocrine therapy alone, although this result was not significant (p = 0.364). Among patients who received an additional dose of vaccine (n = 31), 28 demonstrated an increased antibody response that ranged from 0.2 to >4.4 U/ mL. Conclusion: Most patients with breast cancer generate detectable anti-spike antibodies following SARS-CoV-2 vaccination, though systemic treatments and vaccine type impact level of response. Further studies are needed to better understand the clinical implications of different antibody levels, the effectiveness of additional SARS-CoV-2 vaccine doses, and the risk of breakthrough infections among patients with breast cancer.

16.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Article in English | MEDLINE | ID: mdl-36121873

ABSTRACT

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Subject(s)
Inflammatory Bowel Diseases , Leprosy , Humans , Child , Genome-Wide Association Study , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Malawi , Mali , Leprosy/genetics , Nucleoside Transport Proteins/genetics
17.
Nat Commun ; 13(1): 4073, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835762

ABSTRACT

Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans (n = 245). We find a significant subset of genes demonstrate expression quantitative trait loci specific to Natural Killer cells and these are highly informative of human disease, in particular autoimmunity. A Natural Killer cell transcriptome-wide association study across five common autoimmune diseases identifies further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor region, GNLY, MC1R and UVSSA. Our findings provide new insights into the unique biology of Natural Killer cells, demonstrating markedly different expression quantitative trait loci from other immune cells, with implications for disease mechanisms.


Subject(s)
Autoimmune Diseases , Transcriptome , Autoimmune Diseases/genetics , Autoimmunity/genetics , Carrier Proteins , Gene Expression Profiling , Genome-Wide Association Study , Humans , Killer Cells, Natural , Polymorphism, Single Nucleotide
18.
Proc Natl Acad Sci U S A ; 119(29): e2205498119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858344

ABSTRACT

HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.


Subject(s)
Histocompatibility Antigens Class I , Malaria, Falciparum , Membrane Transport Proteins , Plasmodium falciparum , Binding Sites , Genetic Variation , Histocompatibility Antigens Class I/immunology , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , MicroRNAs/metabolism , Peptides/immunology , Plasmodium falciparum/immunology , RNA, Messenger/genetics , Transcription Factor AP-2/metabolism
19.
J Invest Dermatol ; 142(11): 2896-2908.e4, 2022 11.
Article in English | MEDLINE | ID: mdl-35605659

ABSTRACT

Cutaneous immune-related adverse events (cirAEs) are the most prevalent complication to arise from immunotherapy and cause significant morbidity. We aimed to determine the spectrum, timing, clinical features, and outcomes of cirAEs by conducting an observational pharmacovigilance study using VigiBase, the World Health Organization's global database of individual case safety reports from over 130 member countries (ClinicalTrials.gov, number NCT04898751). We compared adverse event reporting in patients who received immune checkpoint inhibitors (91,323 adverse events) with those of the full reporting database (18,919,358 adverse events). There were 10,933 cases of cirAEs within 51 distinct dermatologic types, with 27 specific eruptions with disproportionate signal represented (information component [IC]025 > 0). Of these 27 eruptions, there were eight cirAEs with n > 100 reports, including vitiligo (IC025 = 4.87), bullous pemphigoid (IC025 = 4.08), lichenoid dermatitis (IC025 = 3.69), erythema multiforme (IC025 = 1.03), toxic epidermal necrolysis (IC025 = 0.95), Stevens‒Johnson syndrome (IC025 = 0.41), drug eruption (IC025 = 0.11), and eczematous dermatitis (IC025 = 0.11). There were differences in time to onset after immune checkpoint inhibitor initiation, with a median of approximately 1 month (erythema multiforme, Stevens‒Johnson syndrome, and toxic epidermal necrolysis), 2 months (drug eruption and eczematous dermatitis), 4 months (lichenoid dermatitis), and 5‒6 months (bullous pemphigoid and vitiligo). CirAEs are diverse, dependent on cancer type, and have distinct and different onset times that are linked to the cirAE subtype.


Subject(s)
Drug Eruptions , Eczema , Erythema Multiforme , Pemphigoid, Bullous , Stevens-Johnson Syndrome , Vitiligo , Humans , Pharmacovigilance , Immune Checkpoint Inhibitors/adverse effects , Stevens-Johnson Syndrome/etiology , Stevens-Johnson Syndrome/complications , Vitiligo/complications , Drug Eruptions/epidemiology , Drug Eruptions/etiology , Erythema Multiforme/complications , Eczema/complications
20.
Virulence ; 13(1): 890-902, 2022 12.
Article in English | MEDLINE | ID: mdl-35587156

ABSTRACT

Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020. One hundred and twenty-four participants were classified into five groups: previously exposed but without evidence of infection, having no known exposure or evidence of infection, seroconverted without symptoms, previously diagnosed with symptomatic COVID-19, and recovered after hospitalization with COVID-19. Prevalence of IgGs specific to the following antigens was compared between the five groups: recombinant SARS-CoV-2 and betacoronavirus spike and nucleocapsid protein domains, peptides from a tiled array of 22-mers corresponding to the entire spike and nucleocapsid proteins, and peptides corresponding to predicted immunogenic regions from other proteins of SARS-CoV-2. Antibody abundance generally correlated positively with severity of prior illness. A number of specific immunogenic peptides and some that may be associated with milder illness or protection from symptomatic infection were identified. No convincing association was observed between antibodies to Receptor Binding Domain(s) (RBDs) of less pathogenic betacoronaviruses HKU1 or OC43 and COVID-19 severity. However, apparent cross-reaction with SARS-CoV RBD was evident and some predominantly asymptomatic individuals had antibodies to both MERS-CoV and SARS-CoV RBDs. Findings from this pilot study may inform development of diagnostics, vaccines, and therapeutic antibodies, and provide insight into viral pathogenic mechanisms.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Pilot Projects , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...