Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Cancers (Basel) ; 16(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39123463

ABSTRACT

BACKGROUND: Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we performed a broad analysis of the link between hyperinsulinemia and chromatin acetylation; our top "hit" was chromatin opening at H3K9ac. METHODS: Building on our published preclinical studies, here, we performed a detailed analysis of the link between insulin resistance, chromatin acetylation, and inflammation using an initial test set of 28 women and validation sets of 245, 22, and 53 women. RESULTS: ChIP-seq identified chromatin acetylation and opening at the genes coding for TNFα and IL6 in insulin-resistant women. Pathway analysis identified inflammatory response genes, NFκB/TNFα-signaling, reactome cytokine signaling, innate immunity, and senescence. Consistent with this finding, flow cytometry identified increased senescent circulating peripheral T-cells. DNA methylation analysis identified evidence of accelerated aging in insulin-resistant vs. metabolically healthy women. CONCLUSIONS: This study shows that insulin-resistant women have increased chromatin acetylation/opening, inflammation, and, perhaps, accelerated aging. Given the role that inflammation plays in cancer initiation and progression, these studies provide a potential mechanistic link between insulin resistance and cancer.

2.
Mol Ther Nucleic Acids ; 35(3): 102252, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39071954

ABSTRACT

We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. In vivo, blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC). GapmeR-injected T1D Akita mice showed significantly lower BGLs compared to Akita-NC mice. hlncMGC-GapmeR lowered BGLs in partially humanized lncMGC (hlncMGC)-STZ mice compared to NC-injected mice. CHOP (ER stress regulating transcription factor) and lncMGC were upregulated in islets from diabetic mice but not in lncMGC-KO and GapmeR-injected diabetic mice, suggesting ER stress involvement. In vitro, hlncMGC-GapmeR increased the viability of isolated islets from human donors and hlncMGC mice and protected them from cytokine-induced apoptosis. Anti-ER stress and anti-apoptotic genes were upregulated, but pro-apoptotic genes were down-regulated in lncMGC KO mice islets and GapmeR-treated human islets. Taken together, these results show that a GapmeR-targeting lncMGC is effective in ameliorating diabetes in mice and also preserves human and mouse islet viability, implicating clinical translation potential.

3.
Am J Physiol Renal Physiol ; 327(3): F327-F339, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38961840

ABSTRACT

Diabetes, a chronic disease characterized by hyperglycemia, is associated with significantly accelerated complications, including diabetic kidney disease (DKD), which increases morbidity and mortality. Hyperglycemia and other diabetes-related environmental factors such as overnutrition, sedentary lifestyles, and hyperlipidemia can induce epigenetic changes. Working alone or with genetic factors, these epigenetic changes that occur without alterations in the underlying DNA sequence, can alter the expression of pathophysiological genes and impair functions of associated target cells/organs, leading to diabetic complications like DKD. Notably, some hyperglycemia-induced epigenetic changes persist in target cells/tissues even after glucose normalization, leading to sustained complications despite glycemic control, so-called metabolic memory. Emerging evidence from in vitro and in vivo animal models and clinical trials with subjects with diabetes identified clear associations between metabolic memory and epigenetic changes including DNA methylation, histone modifications, chromatin structure, and noncoding RNAs at key loci. Targeting such persistent epigenetic changes and/or molecules regulated by them can serve as valuable opportunities to attenuate, or erase metabolic memory, which is crucial to prevent complication progression. Here, we review these cell/tissue-specific epigenetic changes identified to-date as related to diabetic complications, especially DKD, and the current status on targeting epigenetics to tackle metabolic memory. We also discuss limitations in current studies, including the need for more (epi)genome-wide studies, integrative analysis using multiple epigenetic marks and Omics datasets, and mechanistic evaluation of metabolic memory. Considering the tremendous technological advances in epigenomics, genetics, sequencing, and availability of genomic datasets from clinical cohorts, this field is likely to see considerable progress in the upcoming years.


Subject(s)
DNA Methylation , Diabetic Nephropathies , Epigenesis, Genetic , Humans , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetes Complications/metabolism , Diabetes Complications/genetics
4.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798611

ABSTRACT

Vasculopathies occur 15 years earlier in individuals with diabetes mellitus (DM) as compared to those without, but the underlying mechanisms driving diabetic vasculopathy remain incompletely understood. Endothelial cells (ECs) and macrophages (MΦ) are critical players in vascular wall and their crosstalk is crucial in diabetic vasculopathy. In diabetes, EC activation enables monocyte recruitment, which transmigrate into the intima and differentiate into macrophages (MΦ). Beyond this established model of diapedesis, EC-MΦ interplay is highly intricate and heterogenous. To capture these highly context dependent EC-MΦ interactions, we leveraged single-cell (sc)RNA-seq in conjunction with spatial transcriptome (ST)-seq profiling to analyze human mesenteric arteries from non-diabetic (ND) and type 2 diabetic (T2D) donors. We provide in this study a transcriptomic map encompassing major arterial vascular cells, e.g., EC, mononuclear phagocyte (MP), and T cells, and their interactions associated with human T2D. Furthermore, we identified Triggering Receptor Expressed on Myeloid Cells 2 ( TREM2) as a top T2D-induced gene in MP, with concomitant increase of TREM2 ligands in ECs. TREM2 induction was confirmed in mouse models of T2D and monocyte/MΦ subjected to DM-mimicking stimuli. Perturbing TREM2 with either an antibody or silencing RNA in MPs led to decreased pro-inflammatory responses in MPs and ECs and increased EC migration in vitro . In a mouse model of diabetes, TREM2 expression and its interaction with ECs are increased in the ischemic, as compared to non-ischemic muscles. Importantly, neutralization of TREM2 using a neutralizing antibody enhanced ischemic recovery and flow reperfusion in the diabetic mice, suggesting a role of TREM2 in promoting diabetic PAD. Finally, we verified that both TREM2 expression and the TREM2-EC-interaction are increased in human patients with DM-PAD. Collectively, our study presents the first atlas of human diabetic vessels with a focus on EC-MP interactions. Exemplified by TREM2, our study provides valuable insights into EC-MΦ interactions, key processes contributing to diabetic vasculopathies and the potential of targeting these interactions for therapeutic development.

5.
Sci Transl Med ; 16(748): eadj3385, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776390

ABSTRACT

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up. Our epigenome-wide analysis identified DNAmet at 17 CpGs (5'-cytosine-phosphate-guanine-3' loci) associated with risk of KF independent of major clinical risk factors. DNAmet at these KF-associated CpGs remained stable over a median period of 4.7 years. Furthermore, DNAmet variations at seven KF-associated CpGs were strongly associated with multiple genetic variants at seven genomic regions, suggesting a strong genetic influence on DNAmet. The effects of DNAmet variations at the KF-associated CpGs on risk of KF were partially mediated by multiple KF-associated circulating proteins and KF-associated circulating miRNAs. A prediction model for risk of KF was developed by adding blood cell DNAmet at eight selected KF-associated CpGs to the clinical model. This updated model significantly improved prediction performance (c-statistic = 0.93) versus the clinical model (c-statistic = 0.85) at P = 6.62 × 10-14. In conclusion, our multiomics study provides insights into mechanisms through which variation of DNAmet may affect KF development and shows that blood cell DNAmet at certain CpGs can improve risk prediction for KF in T1D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1 , Genetic Variation , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , DNA Methylation/genetics , Male , Female , Renal Insufficiency/genetics , Renal Insufficiency/blood , MicroRNAs/genetics , MicroRNAs/blood , Adult , CpG Islands/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/blood , Risk Factors
6.
Elife ; 132024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251974

ABSTRACT

Chromatin-associated RNAs (caRNAs) form a relatively poorly recognized layer of the epigenome. The caRNAs reported to date are transcribed from the nuclear genome. Here, leveraging a recently developed assay for detection of caRNAs and their genomic association, we report that mitochondrial RNAs (mtRNAs) are attached to the nuclear genome and constitute a subset of caRNA, thus termed mt-caRNA. In four human cell types analyzed, mt-caRNAs preferentially attach to promoter regions. In human endothelial cells (ECs), the level of mt-caRNA-promoter attachment changes in response to environmental stress that mimics diabetes. Suppression of a non-coding mt-caRNA in ECs attenuates stress-induced nascent RNA transcription from the nuclear genome, including that of critical genes regulating cell adhesion, and abolishes stress-induced monocyte adhesion, a hallmark of dysfunctional ECs. Finally, we report increased nuclear localization of multiple mtRNAs in the ECs of human diabetic donors, suggesting many mtRNA translocate to the nucleus in a cell stress and disease-dependent manner. These data nominate mt-caRNAs as messenger molecules responsible for mitochondrial-nuclear communication and connect the immediate product of mitochondrial transcription with the transcriptional regulation of the nuclear genome.


Subject(s)
Endothelial Cells , RNA , Humans , RNA, Mitochondrial/genetics , Chromatin , Biological Assay
7.
Diabetes ; 73(4): 611-617, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37967313

ABSTRACT

More than 30% of patients with type 1 diabetes develop diabetic kidney disease (DKD), which significantly increases mortality risk. The Diabetes Control and Complications Trial (DCCT) and follow-up study, Epidemiology of Diabetes Interventions and Complications (EDIC), established that glycemic control measured by HbA1c predicts DKD risk. However, the continued high incidence of DKD reinforces the urgent need for additional biomarkers to supplement HbA1c. Here, we assessed biomarkers induced by methylglyoxal (MG), a metabolic by-product that forms covalent adducts on DNA, RNA, and proteins, called MG adducts. Urinary MG adducts were measured in samples from patients with type 1 diabetes enrolled in DCCT/EDIC who did (case patients; n = 90) or did not (control patients; n = 117) develop DKD. Univariate and multivariable analyses revealed that measurements of MG adducts independently predict DKD before established DKD biomarkers such as glomerular filtration rate and albumin excretion rate. Elevated levels of MG adducts bestowed the greatest risk of developing DKD in a multivariable model that included HbA1c and other clinical covariates. Our work establishes a novel class of biomarkers to predict DKD risk and suggests that inclusion of MG adducts may be a valuable tool to improve existing predictors of complications like DKD prior to overt disease, and to aid in identifying at-risk individuals and personalized risk management.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/metabolism , Pyruvaldehyde , Follow-Up Studies , Prognosis , Glycated Hemoglobin , Biomarkers/metabolism , Glomerular Filtration Rate
8.
Front Med (Lausanne) ; 10: 1206071, 2023.
Article in English | MEDLINE | ID: mdl-37675136

ABSTRACT

With advancements in cancer treatment and supportive care, there is a growing population of childhood cancer survivors who experience a substantial burden of comorbidities related to having received cancer treatment at a young age. Despite an overall reduction in the incidence of most chronic health conditions in childhood cancer survivors over the past several decades, the cumulative incidence of certain late effects, in particular diabetes mellitus (DM), has increased. The implications are significant, because DM is a key risk factor for cardiovascular disease, a leading cause of premature death in childhood cancer survivors. The underlying pathophysiology of DM in cancer survivors is multifactorial. DM develops at younger ages in survivors compared to controls, which may reflect an "accelerated aging" phenotype in these individuals. The treatment-related exposures (i.e., chemotherapy, radiation) that increase risk for DM in childhood cancer survivors may be more than additive with established DM risk factors (e.g., older age, obesity, race, and ethnicity). Emerging research also points to parallels in cellular processes implicated in aging- and cancer treatment-related DM. Still, there remains marked inter-individual variability regarding risk of DM that is not explained by demographic and therapeutic risk factors alone. Recent studies have highlighted the role of germline genetic risk factors and epigenetic modifications that are associated with risk of DM in both the general and oncology populations. This review summarizes our current understanding of recognized risk factors for DM in childhood cancer survivors to help inform targeted approaches for disease screening, prevention, and treatment. Furthermore, it highlights the existing scientific gaps in understanding the relative contributions of individual therapeutic exposures and the mechanisms by which they exert their effects that uniquely predispose this population to DM following cancer treatment.

9.
Cell Rep Methods ; 3(5): 100465, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37323577

ABSTRACT

Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease.


Subject(s)
DNA Methylation , Neoplasms , Animals , Mice , DNA Methylation/genetics , CpG Islands/genetics , DNA, Single-Stranded/metabolism , Neoplasms/genetics , Epithelial Cells/metabolism
10.
Front Mol Biosci ; 10: 1204124, 2023.
Article in English | MEDLINE | ID: mdl-37325470

ABSTRACT

Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play key roles in diabetic kidney disease (DKD). The miR-379 megacluster of miRNAs and its host transcript lnc-megacluster (lncMGC) are regulated by transforming growth factor-ß (TGF-ß), increased in the glomeruli of diabetic mice, and promote features of early DKD. However, biochemical functions of lncMGC are unknown. Here, we identified lncMGC-interacting proteins by in vitro-transcribed lncMGC RNA pull down followed by mass spectrometry. We also created lncMGC-knockout (KO) mice by CRISPR-Cas9 editing and used primary mouse mesangial cells (MMCs) from the KO mice to examine the effects of lncMGC on the gene expression related to DKD, changes in promoter histone modifications, and chromatin remodeling. Methods: In vitro-transcribed lncMGC RNA was mixed with lysates from HK2 cells (human kidney cell line). lncMGC-interacting proteins were identified by mass spectrometry. Candidate proteins were confirmed by RNA immunoprecipitation followed by qPCR. Cas9 and guide RNAs were injected into mouse eggs to create lncMGC-KO mice. Wild-type (WT) and lncMGC-KO MMCs were treated with TGF-ß, and RNA expression (by RNA-seq and qPCR) and histone modifications (by chromatin immunoprecipitation) and chromatin remodeling/open chromatin (by Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq) were examined. Results: Several nucleosome remodeling factors including SMARCA5 and SMARCC2 were identified as lncMGC-interacting proteins by mass spectrometry, and confirmed by RNA immunoprecipitation-qPCR. MMCs from lncMGC-KO mice showed no basal or TGF-ß-induced expression of lncMGC. Enrichment of histone H3K27 acetylation and SMARCA5 at the lncMGC promoter was increased in TGF-ß-treated WT MMCs but significantly reduced in lncMGC-KO MMCs. ATAC peaks at the lncMGC promoter region and many other DKD-related loci including Col4a3 and Col4a4 were significantly lower in lncMGC-KO MMCs compared to WT MMCs in the TGF-ß-treated condition. Zinc finger (ZF), ARID, and SMAD motifs were enriched in ATAC peaks. ZF and ARID sites were also found in the lncMGC gene. Conclusion: lncMGC RNA interacts with several nucleosome remodeling factors to promote chromatin relaxation and enhance the expression of lncMGC itself and other genes including pro-fibrotic genes. The lncMGC/nucleosome remodeler complex promotes site-specific chromatin accessibility to enhance DKD-related genes in target kidney cells.

11.
Noncoding RNA ; 9(3)2023 May 15.
Article in English | MEDLINE | ID: mdl-37218991

ABSTRACT

(1) Background: Hypertension is a complex, multifactorial disease that is caused by genetic and environmental factors. Apart from genetic predisposition, the mechanisms involved in this disease have yet to be fully understood. We previously reported that LEENE (lncRNA enhancing endothelial nitric oxide expression, transcribed from LINC00520 in the human genome) regulates endothelial cell (EC) function by promoting the expression of endothelial nitric oxide synthase (eNOS) and vascular growth factor receptor 2 (VEGFR2). Mice with genetic deletion of the LEENE/LINC00520 homologous region exhibited impaired angiogenesis and tissue regeneration in a diabetic hindlimb ischemia model. However, the role of LEENE in blood pressure regulation is unknown. (2) Methods: We subjected mice with genetic ablation of leene and wild-type littermates to Angiotensin II (AngII) and monitored their blood pressure and examined their hearts and kidneys. We used RNA-sequencing to identify potential leene-regulated molecular pathways in ECs that contributed to the observed phenotype. We further performed in vitro experiments with murine and human ECs and ex vivo experiments with murine aortic rings to validate the select mechanism. (3) Results: We identified an exacerbated hypertensive phenotype of leene-KO mice in the AngII model, evidenced by higher systolic and diastolic blood pressure. At the organ level, we observed aggravated hypertrophy and fibrosis in the heart and kidney. Moreover, the overexpression of human LEENE RNA, in part, restored the signaling pathways impaired by leene deletion in murine ECs. Additionally, Axitinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR suppresses LEENE in human ECs. (4) Conclusions: Our study suggests LEENE as a potential regulator in blood pressure control, possibly through its function in ECs.

12.
Arterioscler Thromb Vasc Biol ; 43(7): 1157-1175, 2023 07.
Article in English | MEDLINE | ID: mdl-37128912

ABSTRACT

BACKGROUND: Obesity and diabetes are associated with elevated free fatty acids like palmitic acid (PA), which promote chronic inflammation and impaired inflammation resolution associated with cardiometabolic disorders. Long noncoding RNAs (lncRNAs) are implicated in inflammatory processes; however, their roles in PA-regulated inflammation and resolution are unclear. METHODS: We performed RNA-sequencing analysis to identify PA-regulated coding genes and novel lncRNAs in CD14+ monocytes from healthy volunteers. We investigated the regulation and function of an uncharacterized PA-induced lncRNA PARAIL (PA-regulated anti-inflammatory lncRNA). We examined its role in inflammation resolution by employing knockdown and overexpression strategies in human and mouse macrophages. We also used RNA pulldown coupled with mass spectrometry to identify PARAIL interacting nuclear proteins and their mechanistic involvement in PARAIL functions in human macrophages. RESULTS: Treatment of human CD14+ monocytes with PA-induced several lncRNAs and genes associated with inflammatory phenotype. PA strongly induced lncRNA PARAIL expressed near RIPK2. PARAIL was also induced by cytokines and infectious agents in human monocytes/macrophages and was regulated by NF-κB (nuclear factor-kappa B). Time course studies showed PARAIL was induced during inflammation resolution phase in PA-treated macrophages. PARAIL knockdown with antisense oligonucleotides upregulated key inflammatory genes and vice versa with PARAIL overexpression. We found that PARAIL interacts with ELAVL1 (ELAV-like RNA-binding protein 1) protein via adenylate/uridylate-rich elements (AU-rich elements; AREs). ELAVL1 knockdown inhibited the anti-inflammatory functions of PARAIL. Moreover, PARAIL knockdown increased cytosolic localization of ELAVL1 and increased the stability of ARE-containing inflammatory genes. Mouse orthologous Parail was downregulated in macrophages from mice with diabetes and atherosclerosis. Parail overexpression attenuated proinflammatory genes in mouse macrophages. CONCLUSIONS: Upregulation of PARAIL under acute inflammatory conditions contributes to proresolution mechanisms via PARAIL-ELAVL1 interactions. Conversely, PARAIL downregulation in cardiometabolic diseases enhances ELAVL1 function and impairs inflammation resolution to further augment inflammation. Thus, inflammation-resolving lncRNAs like PARAIL represent novel targets to combat inflammatory cardiometabolic diseases.


Subject(s)
Atherosclerosis , RNA, Long Noncoding , Humans , Mice , Animals , Monocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Palmitic Acid/toxicity , Palmitic Acid/metabolism , Macrophages/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , NF-kappa B/metabolism , Atherosclerosis/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism
13.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36512424

ABSTRACT

Impaired angiogenesis in diabetes is a key process contributing to ischemic diseases such as peripheral arterial disease. Epigenetic mechanisms, including those mediated by long noncoding RNAs (lncRNAs), are crucial links connecting diabetes and the related chronic tissue ischemia. Here we identify the lncRNA that enhances endothelial nitric oxide synthase (eNOS) expression (LEENE) as a regulator of angiogenesis and ischemic response. LEENE expression was decreased in diabetic conditions in cultured endothelial cells (ECs), mouse hind limb muscles, and human arteries. Inhibition of LEENE in human microvascular ECs reduced their angiogenic capacity with a dysregulated angiogenic gene program. Diabetic mice deficient in Leene demonstrated impaired angiogenesis and perfusion following hind limb ischemia. Importantly, overexpression of human LEENE rescued the impaired ischemic response in Leene-knockout mice at tissue functional and single-cell transcriptomic levels. Mechanistically, LEENE RNA promoted transcription of proangiogenic genes in ECs, such as KDR (encoding VEGFR2) and NOS3 (encoding eNOS), potentially by interacting with LEO1, a key component of the RNA polymerase II-associated factor complex and MYC, a crucial transcription factor for angiogenesis. Taken together, our findings demonstrate an essential role for LEENE in the regulation of angiogenesis and tissue perfusion. Functional enhancement of LEENE to restore angiogenesis for tissue repair and regeneration may represent a potential strategy to tackle ischemic vascular diseases.


Subject(s)
Diabetes Mellitus, Experimental , RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endothelial Cells/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Muscle, Skeletal/metabolism , Neovascularization, Physiologic/genetics , Ischemia/genetics , Ischemia/metabolism , Mice, Knockout , Hindlimb , Mice, Inbred C57BL
14.
Cells ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36497078

ABSTRACT

The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.


Subject(s)
Aging , Breast Neoplasms , Duffy Blood-Group System , Immunosenescence , Humans , Chemokines/metabolism , Duffy Blood-Group System/genetics , Genotype , Leukocytes/metabolism , Receptors, Antigen , Biomarkers
15.
Am J Physiol Renal Physiol ; 323(6): F686-F699, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36227097

ABSTRACT

Obesity is associated with increased risk for diabetes and damage to the kidneys. Evidence suggests that miR-379 plays a role in the pathogenesis of diabetic kidney disease. However, its involvement in obesity-induced kidney injury is not known and was therefore investigated in this study by comparing renal phenotypes of high-fat diet (HFD)-fed wild-type (WT) and miR-379 knockout (KO) mice. Male and female WT mice on the HFD for 10 or 24 wk developed obesity, hyperinsulinemia, and kidney dysfunction manifested by albuminuria and glomerular injuries. However, these adverse alterations in HFD-fed WT mice were significantly ameliorated in HFD-fed miR-379 KO mice. HFD feeding increased glomerular expression of miR-379 and decreased its target gene, endoplasmic reticulum (ER) degradation enhancing α-mannosidase-like protein 3 (Edem3), a negative regulator of ER stress. Relative to the standard chow diet-fed controls, expression of profibrotic transforming growth factor-ß1 (Tgf-ß1) was significantly increased, whereas Zeb2, which encodes ZEB2, a negative regulator of Tgf-ß1, was decreased in the glomeruli in HFD-fed WT mice. Notably, these changes as well as HFD-induced increased expression of other profibrotic genes, glomerular hypertrophy, and interstitial fibrosis in HFD-fed WT mice were attenuated in HFD-fed miR-379 KO mice. In cultured primary glomerular mouse mesangial cells (MMCs) isolated from WT mice, treatment with high insulin (mimicking hyperinsulinemia) increased miR-379 expression and decreased its target, Edem3. Moreover, insulin also upregulated Tgf-ß1 and downregulated Zeb2 in WT MMCs, but these changes were significantly attenuated in MMCs from miR-379 KO mice. Together, these experiments revealed that miR-379 deletion protects mice from HFD- and hyperinsulinemia-induced kidney injury at least in part through reduced ER stress.NEW & NOTEWORTHY miR-379 knockout mice are protected from high-fat diet (HFD)-induced kidney damage through key miR-379 targets associated with ER stress (Edem3). Mechanistically, treatment of mesangial cells with insulin (mimicking hyperinsulinemia) increased expression of miR-379, Tgf-ß1, miR-200, and Chop and decreases Edem3. Furthermore, TGF-ß1-induced fibrotic genes are attenuated by a GapmeR targeting miR-379. The results implicate a miR-379/EDEM3/ER stress/miR-200c/Zeb2 signaling pathway in HFD/obesity/insulin resistance-induced renal dysfunction. Targeting miR-379 with GapmeRs can aid in the treatment of obesity-induced kidney disease.


Subject(s)
Diabetic Nephropathies , Insulin Resistance , MicroRNAs , Animals , Female , Male , Mice , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diet, High-Fat/adverse effects , Insulin/metabolism , Kidney/metabolism , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Transforming Growth Factor beta1/metabolism
16.
Mol Ther Nucleic Acids ; 30: 115-130, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36250205

ABSTRACT

We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.

17.
Cancers (Basel) ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36139643

ABSTRACT

Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.

18.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012111

ABSTRACT

Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, "Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?" By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.


Subject(s)
Triple Negative Breast Neoplasms , Androgens/therapeutic use , Drug Resistance, Neoplasm , Female , Humans , Hypoxia , Receptors, Androgen/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
19.
Front Cardiovasc Med ; 9: 881916, 2022.
Article in English | MEDLINE | ID: mdl-35837599

ABSTRACT

Vascular endothelial cells (ECs) play a pivotal role in whole body homeostasis. Recent advances have revealed enhancer-associated long non-coding RNAs (lncRNAs) as essential regulators in EC function. We investigated LINC00607, a super enhancer-derived lncRNA (SE-lncRNA) in human arteries with an emphasis on ECs. Based on public databases and our single cell RNA-sequencing (scRNA-seq) data from human arteries collected from healthy and diabetic donors, we found that LINC00607 is abundantly expressed in the arteries and its level is increased in diabetic humans. Using RNA-sequencing, we characterized the transcriptomes regulated by LINC00607 in ECs and vascular smooth muscle cells (VSMCs) and in basal and diabetic conditions in ECs. Furthermore, through transcriptomic and promoter analysis, we identified c-Myc as an upstream transcription factor of LINC00607. Finally, using scRNA-seq, we demonstrated that modified antisense oligonucleotide inhibitor of LINC00607 can reverse dysfunctional changes induced by high glucose and TNFα in ECs. Collectively, our study demonstrates a multi-pronged approach to characterize LINC00607 in vascular cells and its gene regulatory networks in ECs and VSMCs. Our findings provide new insights into the regulation and function of SE-derived lncRNAs in both vascular homeostasis and dysfunction in a cell-type and context-dependent manner, which could have a significant impact on our understanding of epigenetic regulation implicated in cardiovascular health and diseases like diabetes.

20.
Am J Physiol Cell Physiol ; 323(2): C570-C582, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35785987

ABSTRACT

Inherent and acquired abnormalities in gene regulation due to the influence of genetics and epigenetics (traits related to environment rather than genetic factors) underlie many diseases including diabetes. Diabetes could lead to multiple complications including retinopathy, nephropathy, and cardiovascular disease that greatly increase morbidity and mortality. Epigenetic changes have also been linked to diabetes-related complications. Genes associated with many pathophysiological features of these vascular complications (e.g., inflammation, fibrosis, and oxidative stress) can be regulated by epigenetic mechanisms involving histone posttranslational modifications, DNA methylation, changes in chromatin structure/remodeling, and noncoding RNAs. Intriguingly, these epigenetic changes triggered during early periods of hyperglycemic exposure and uncontrolled diabetes are not immediately corrected even after restoration of normoglycemia and metabolic balance. This latency in effect across time and conditions is associated with persistent development of complications in diabetes with prior history of poor glycemic control, termed as metabolic memory or legacy effect. Epigenetic modifications are generally reversible and provide a window of therapeutic opportunity to ameliorate cellular dysfunction and mitigate or "erase" metabolic memory. Notably, trained immunity and related epigenetic changes transmitted from hematopoietic stem cells to innate immune cells have also been implicated in metabolic memory. Hence, identification of epigenetic variations at candidate genes, or epigenetic signatures genome-wide by epigenome-wide association studies can aid in prompt diagnosis to prevent progression of complications and identification of much-needed new therapeutic targets. Herein, we provide a review of epigenetics and epigenomics in metabolic memory of diabetic complications covering the current basic research, clinical data, and translational implications.


Subject(s)
Cardiovascular Diseases , Diabetes Complications , Diabetes Mellitus , Cardiovascular Diseases/genetics , DNA Methylation/genetics , Diabetes Complications/etiology , Diabetes Mellitus/metabolism , Epigenesis, Genetic/genetics , Epigenomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL