Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(32): eadl4893, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121214

ABSTRACT

Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.


Subject(s)
Cell Cycle Proteins , Chromatin , Gene Regulatory Networks , Transcription Factors , Transcription, Genetic , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Gene Expression Regulation , Mediator Complex/metabolism , Mediator Complex/genetics , Single-Cell Analysis , Transcriptome , Cohesins , Bromodomain Containing Proteins
2.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38949522

ABSTRACT

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Subject(s)
Carboxy-Lyases , Lupus Erythematosus, Systemic , Macrophages , Mice, Knockout , Succinates , Animals , Lupus Erythematosus, Systemic/immunology , Mice , Humans , Female , Macrophages/immunology , Succinates/pharmacology , Cardiovascular Diseases/immunology , Biomarkers , Mice, Inbred C57BL , Signal Transduction/immunology , Adult , Male , Disease Models, Animal , Middle Aged , Cytokines/metabolism , Toll-Like Receptor 7/metabolism , Hydro-Lyases
3.
Ann Rheum Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902010

ABSTRACT

OBJECTIVES: Autoantibodies targeting intracellular proteins are common in various autoimmune diseases. In the context of myositis, the pathologic significance of these autoantibodies has been questioned due to the assumption that autoantibodies cannot enter living muscle cells. This study aims to investigate the validity of this assumption. METHODS: Confocal immunofluorescence microscopy was employed to localise antibodies and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was used to examine the transcriptomic profiles of 669 samples, including those from patients with myositis, disease controls and healthy controls. Additionally, antibodies from myositis patients were introduced into cultured myoblasts through electroporation, and their transcriptomic profiles were analysed using RNA sequencing. RESULTS: In patients with myositis autoantibodies, antibodies accumulated inside myofibres in the same subcellular compartment as the autoantigen. Bulk RNA sequencing revealed that muscle biopsies from patients with autoantibodies targeting transcriptional regulators exhibited transcriptomic patterns consistent with dysfunction of the autoantigen. For instance, in muscle biopsies from patients with anti-PM/Scl autoantibodies recognising components of the nuclear RNA exosome complex, an accumulation of divergent transcripts and long non-coding RNAs was observed; these RNA forms are typically degraded by the nuclear RNA exosome complex. Introducing patient antibodies into cultured muscle cells recapitulated the transcriptomic effects observed in human disease. Further supporting evidence suggested that myositis autoantibodies recognising other autoantigens may also disrupt the function of their targets. CONCLUSIONS: This study demonstrates that, in myositis, autoantibodies are internalised into living cells, causing biological effects consistent with the disrupted function of their autoantigen.

4.
Arthritis Rheumatol ; 76(10): 1501-1511, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38923259

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus (SLE) increases cardiovascular disease (CVD) risk, and this is not explained by traditional risk factors. Characterization of blood immunologic signatures that associate with subclinical CVD and predict its progression has been challenging and may help identify subgroups at risk. METHODS: Patients with SLE (n = 77) and healthy controls (HCs) (n = 27) underwent assessments of arterial stiffness, vascular wall inflammation, and coronary atherosclerosis burden with cardio-ankle vascular index (CAVI); fluorodeoxyglucose-positron emission tomography/computed tomography (CT) (target-to-background ratio [TBR]); and coronary CT angiography. Whole blood bulk RNA sequencing was performed in a subset of study participants (HC n = 10, SLE n = 20). In a partially overlapping subset (HC n = 24, SLE n = 64), serum inflammatory protein biomarkers were quantified with an Olink platform. RESULTS: CAVI, TBR, and noncalcified coronary plaque burden (NCB) were increased in patients with SLE compared to HCs. When comparing patients with SLE with high CAVI scores to those with low CAVI scores or to HCs, there was a down-regulation of genes in pathways involved in the cell cycle and differentially regulated pathways related to metabolism. Distinct serum proteins associated with increased CAVI (CCL23, colony-stimulating factor 1, latency-activating peptide transforming growth factor ß1, interleukin 33 [IL-33], CD8A, and IL-12B), NCB (monocyte chemotactic protein 4 and FMS-like tyrosine kinase 3 ligand [Flt3L]), and TBR (CD5, IL-1α, AXIN1, cystatin D [CST5], and tumor necrosis factor receptor superfamily 9; P < 0.05). CONCLUSION: Blood gene expression patterns and serum proteins that associate with worse vascular phenotypes suggest dysregulated immune and metabolic pathways linked to premature CVD. Cytokines and chemokines identified in associations with arterial stiffness, inflammation, and NCB in SLE may allow for characterization of new CVD biomarkers in lupus.


Subject(s)
Lupus Erythematosus, Systemic , Vascular Stiffness , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/blood , Female , Male , Middle Aged , Adult , Vascular Stiffness/physiology , Biomarkers/blood , Positron Emission Tomography Computed Tomography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/blood , Coronary Artery Disease/immunology , Case-Control Studies , Interleukin-33/blood
5.
medRxiv ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38605883

ABSTRACT

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

6.
J Pak Med Assoc ; 74(3): 555-558, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38591296

ABSTRACT

Constitutional chromosomal abnormalities play a significant role in causing reproductive anomalies in individuals of reproductive age. With the rapid advancement of genome engineering techniques, it has now become possible to cure different genetic disorders. However, very limited data is available regarding the prevalence of such aberrations in the Pakistani population. Considering this factor, this retrospective analysis was undertaken to elucidate the type and prevalence rate of such abnormalities in our population. A total of 241 individuals, who were referred to the Liaquat National Hospital, from January 2017 to December 2021, with a history of infertility or miscarriages, were evaluated using the standard GTG banding technique. The results revealed a notably high percentage 44(18.2%) of chromosomal abnormalities in our population. Surprisingly, the frequency of these anomalies was observed to be higher in males than in females. However, further research is needed using a larger sample size to confirm the findings of this investigation.


Subject(s)
Abortion, Spontaneous , Chromosome Aberrations , Humans , Male , Pregnancy , Female , Retrospective Studies , Pakistan/epidemiology , Tertiary Care Centers , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/genetics
7.
medRxiv ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38313303

ABSTRACT

Objectives: Myositis is a heterogeneous family of autoimmune muscle diseases. As myositis autoantibodies recognize intracellular proteins, their role in disease pathogenesis has been unclear. This study aimed to determine whether myositis autoantibodies reach their autoantigen targets within muscle cells and disrupt the normal function of these proteins. Methods: Confocal immunofluorescence microscopy was used to localize antibodies and other proteins of interest in myositis muscle biopsies. Bulk RNA sequencing was used to study the transcriptomic profiles of 668 samples from patients with myositis, disease controls, and healthy controls. Antibodies from myositis patients were introduced into cultured myoblasts by electroporation and the transcriptomic profiles of the treated myoblasts were studied by bulk RNA sequencing. Results: In patients with myositis autoantibodies, antibodies accumulated inside myofibers in the same subcellular compartment as the autoantigen. Each autoantibody was associated with effects consistent with dysfunction of its autoantigen, such as the derepression of genes normally repressed by Mi2/NuRD in patients with anti-Mi2 autoantibodies, the accumulation of RNAs degraded by the nuclear RNA exosome complex in patients with anti-PM/Scl autoantibodies targeting this complex, and the accumulation of lipids within myofibers of anti-HMGCR-positive patients. Internalization of patient immunoglobulin into cultured myoblasts recapitulated the transcriptomic phenotypes observed in human disease, including the derepression of Mi2/NuRD-regulated genes in anti-Mi2-positive dermatomyositis and the increased expression of genes normally degraded by the nuclear RNA exosome complex in anti-PM/Scl-positive myositis. Conclusions: In myositis, autoantibodies are internalized into muscle fibers, disrupt the biological function of their autoantigen, and mediate the pathophysiology of the disease.

8.
Cells ; 12(17)2023 09 02.
Article in English | MEDLINE | ID: mdl-37681930

ABSTRACT

Dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM) are four major types of idiopathic inflammatory myopathy (IIM). Muscle biopsies from each type of IIM have unique transcriptomic profiles. MicroRNAs (miRNAs) target messenger RNAs (mRNAs), thereby regulating their expression and modulating transcriptomic profiles. In this study, 18 DM, 12 IMNM, 6 AS, 6 IBM, and 6 histologically normal muscle biopsies underwent miRNA profiling using the NanoString nCounter system. Eleven miRNAs were exclusively differentially expressed in DM compared to controls, seven miRNAs were only differentially expressed in AS, and nine miRNAs were specifically upregulated in IBM. No differentially expressed miRNAs were identified in IMNM. We also analyzed miRNA-mRNA associations to identify putative targets of differentially expressed miRNAs. In DM and AS, these were predominantly related to inflammation and cell cycle progression. Moreover, our analysis showed an association between miR-30a-3p, miR-30e-3p, and miR-199b-5p downregulation in DM and the upregulation of target genes induced by type I interferon. In conclusion, we show that muscle biopsies from DM, AS, and IBM patients have unique miRNA signatures and that these miRNAs might play a role in regulating the expression of genes known to be involved in IIM pathogenesis.


Subject(s)
Autoimmune Diseases , MicroRNAs , Myositis, Inclusion Body , Myositis , Humans , Myositis/genetics , MicroRNAs/genetics , RNA, Messenger
9.
Front Immunol ; 14: 1117760, 2023.
Article in English | MEDLINE | ID: mdl-37122745

ABSTRACT

Cytoplasmic DNA is emerging as a pivotal contributor to the pathogenesis of inflammatory diseases and cancer, such as COVID-19 and lung carcinoma. However, the complexity of various cytoplasmic DNA-related pathways and their crosstalk remains challenging to distinguish their specific roles in many distinct inflammatory diseases, especially for the underlying mechanisms. Here, we reviewed the latest findings on cytoplasmic DNA and its signaling pathways in inflammatory lung conditions and lung cancer progression. We found that sustained activation of cytoplasmic DNA sensing pathways contributes to the development of common lung diseases, which may result from external factors or mutations of key genes in the organism. We further discussed the interplays between cytoplasmic DNA and anti-inflammatory or anti-tumor effects for potential immunotherapy. In sum, this review aids in understanding the roles of cytoplasmic DNAs and exploring more therapeutic strategies.


Subject(s)
COVID-19 , Neoplasms , Humans , Immunity, Innate , DNA , Neoplasms/genetics , Neoplasms/therapy , Lung
10.
Ann Rheum Dis ; 82(8): 1091-1097, 2023 08.
Article in English | MEDLINE | ID: mdl-37130727

ABSTRACT

OBJECTIVES: Myositis is a heterogeneous family of diseases including dermatomyositis (DM), immune-mediated necrotising myopathy (IMNM), antisynthetase syndrome (AS) and inclusion body myositis (IBM). Myositis-specific autoantibodies define different subtypes of myositis. For example, patients with anti-Mi2 autoantibodies targeting the chromodomain helicase DNA-binding protein 4 (CHD4)/NuRD complex (a transcriptional repressor) have more severe muscle disease than other DM patients. This study aimed to define the transcriptional profile of muscle biopsies from anti-Mi2-positive DM patients. METHODS: RNA sequencing was performed on muscle biopsies (n=171) from patients with anti-Mi2-positive DM (n=18), DM without anti-Mi2 autoantibodies (n=32), AS (n=18), IMNM (n=54) and IBM (n=16) as well as 33 normal muscle biopsies. Genes specifically upregulated in anti-Mi2-positive DM were identified. Muscle biopsies were stained for human immunoglobulin and protein products corresponding to genes specifically upregulated in anti-Mi2-positive muscle biopsies. RESULTS: A set of 135 genes, including SCRT1 and MADCAM1, was specifically overexpressed in anti-Mi2-positive DM muscle. This set was enriched for CHD4/NuRD-regulated genes and included genes that are not otherwise expressed in skeletal muscle. The expression levels of these genes correlated with anti-Mi2 autoantibody titres, markers of disease activity and with the other members of the gene set. In anti-Mi2-positive muscle biopsies, immunoglobulin was localised to the myonuclei, MAdCAM-1 protein was present in the cytoplasm of perifascicular fibres, and SCRT1 protein was localised to myofibre nuclei. CONCLUSIONS: Based on these findings, we hypothesise that anti-Mi2 autoantibodies could exert a pathogenic effect by entering damaged myofibres, inhibiting the CHD4/NuRD complex, and subsequently derepressing the unique set of genes defined in this study.


Subject(s)
Autoimmune Diseases , Dermatomyositis , Myositis, Inclusion Body , Myositis , Humans , Autoantibodies , Dermatomyositis/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Muscle, Skeletal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL