Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
2.
Nat Chem Biol ; 19(12): 1540-1550, 2023 Dec.
Article En | MEDLINE | ID: mdl-37884805

NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.


NADPH Oxidases , Neoplasms , Humans , NADPH Oxidases/chemistry , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Oxidation-Reduction , Cell Line
3.
J Transl Med ; 21(1): 627, 2023 09 15.
Article En | MEDLINE | ID: mdl-37715252

BACKGROUND: Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS: Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS: SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION: Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.


Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuin 3 , Sirtuins , Humans , Liver Neoplasms/genetics , Sirtuin 1 , Carcinoma, Hepatocellular/genetics , Tumor Suppressor Protein p53 , Homeostasis , Sirtuins/genetics
4.
Bioorg Med Chem ; 93: 117444, 2023 10 01.
Article En | MEDLINE | ID: mdl-37611334

Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.


Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Histone Deacetylase Inhibitors/pharmacology , Molecular Docking Simulation , Calcium Channel Blockers , HCT116 Cells
5.
Biomedicines ; 11(6)2023 Jun 02.
Article En | MEDLINE | ID: mdl-37371719

Epigenetic mechanisms finely regulate gene expression and represent potential therapeutic targets. Cambinol is a synthetic heterocyclic compound that inhibits class III histone deacetylases known as sirtuins (SIRTs). The acetylating action that results could be crucial in modulating cellular functions via epigenetic regulations. The main aim of this research was to investigate the effects of cambinol, and its underlying mechanisms, on cell differentiation by combining wet experiments with bioinformatics analyses and molecular docking simulations. Our in vitro study evidenced the ability of cambinol to induce the differentiation in MCF-7, NB4, and 3T3-L1 cell lines. Interestingly, focusing on the latter that accumulated cytoplasmic lipid droplets, the first promising results related to the action mechanisms of cambinol have shown the induction of cell cycle-related proteins (such as p16 and p27) and modulation of the expression of Rb protein and nuclear receptors related to cell differentiation. Moreover, we explored the inhibitory mechanism of cambinol on human SIRT1 and 2 performing in silico molecular simulations by protein-ligand docking. Cambinol, unlike from other sirtuin inhibitors, is able to better interact with the substrate binding site of SIRT1 than with the inhibition site. Additionally, for SIRT2, cambinol partially interacts with the substrate binding site, although the inhibition site is preferred. Overall, our findings suggest that cambinol might contribute to the development of an alternative to the existing epigenetic therapies that modulate SIRTs.

6.
Cancers (Basel) ; 15(7)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37046620

A large body of clinical and experimental evidence indicates that colorectal cancer is one of the most common multifactorial diseases. Although some useful prognostic biomarkers for clinical therapy have already been identified, it is still difficult to characterize a therapeutic signature that is able to define the most appropriate treatment. Gene expression levels of the epigenetic regulator histone deacetylase 2 (HDAC2) are deregulated in colorectal cancer, and this deregulation is tightly associated with immune dysfunction. By interrogating bioinformatic databases, we identified patients who presented simultaneous alterations in HDAC2, class II major histocompatibility complex transactivator (CIITA), and beta-2 microglobulin (B2M) genes based on mutation levels, structural variants, and RNA expression levels. We found that B2M plays an important role in these alterations and that mutations in this gene are potentially oncogenic. The dysregulated mRNA expression levels of HDAC2 were reported in about 5% of the profiled patients, while other specific alterations were described for CIITA. By analyzing immune infiltrates, we then identified correlations among these three genes in colorectal cancer patients and differential infiltration levels of genetic variants, suggesting that HDAC2 may have an indirect immune-related role in specific subgroups of immune infiltrates. Using this approach to carry out extensive immunological signature studies could provide further clinical information that is relevant to more resistant forms of colorectal cancer.

7.
Int J Cancer ; 153(3): 464-475, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-36444503

Chromatin has an extremely flexible structure that allows the fine regulation of gene expression. To orchestrate this process, small chemical modifications are dynamically added or removed on DNA, RNA and histone substrates. Epigenetic modifications govern a plethora of key cellular functions, whose dysregulation contributes to oncogenesis. The interrelationship between (irreversible) genetic mutations and (reversible) epigenetic alterations and how this crosstalk regulates gene expression has long been a major area of interest. Marks modulating the RNA code (epitranscriptome), such as the well-studied N6 -methyladenosine (m6 A), are known to influence stability, metabolism and life cycle of many mRNAs, including cancer-associated transcripts. Together, epigenetic and epitranscriptomic pathways therefore control the entire cellular expression profile and, eventually, cell fate. Recently, previously undescribed crosstalk between these two pathways has started to be unrevealed. For example, m6 A and its effectors cooperate with histone modifications to localize chromatin-modifying complexes to their target regions. Epigenetic marks governing the expression of m6 A factors can also be found at specific genetic loci. m6 A itself can mark noncoding RNAs (including lncRNAs, circRNAs and miRNAs), influencing their structure, maturation and function. These interactions affect both cell physiology and pathology. Clear evidence that dysregulation of this network plays a role in cancer has emerged, suggesting a new layer of complexity in the landscape of gene expression. Here, we summarize current knowledge on the interplay between m6 A epitranscriptome and epigenome, focusing on cancer processes. We also discuss strategies to target m6 A machinery for future therapeutic intervention.


MicroRNAs , Neoplasms , Humans , Epigenome , Epigenesis, Genetic , Neoplasms/genetics , Neoplasms/metabolism , Chromatin/genetics
8.
Eur J Med Chem ; 247: 115022, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36549114

After over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC50 values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level. Compound 5e provided a huge antiproliferative activity (nanomolar IC50 values) against both haematological and solid cancer cell lines. In leukaemia U937 cells, the hydroxamate 5d and the 2'-aminoanilide 8f induced remarkable cell death after 48 h, with 76% and 100% pre-G1 phase arrest, respectively, showing a stronger effect with respect to SAHA and MS-275 used as reference compounds. In U937 cells, the highest dose- and time-dependent cytodifferentiation was obtained by the 2'-aminoanilide 8d (up to 35% of CD11c positive/propidium iodide negative cells at 5 µM for 48 h). The same 8d and the hydroxamates 5d and 5e were the most effective in inducing p21 protein expression in the same cell line. Mechanistically, 5d, 5e, 8d and 8f increased mRNA expression of p21, BAX and BAK, downregulated cyclin D1 and BCL-2 and modulated pro- and anti-apoptotic microRNAs towards apoptosis induction. Finally, 5e strongly arrested proliferation in nine different haematological cancer cell lines, with dual-digit nanomolar potency towards MV4-11, Kasumi-1, and NB4, being more potent than mocetinostat, used as reference drug.


Antineoplastic Agents , MicroRNAs , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation , Antineoplastic Agents/pharmacology , Hydroxamic Acids/pharmacology , Apoptosis , Pyridines/pharmacology , Histone Deacetylase 1
10.
J Pers Med ; 12(11)2022 Nov 12.
Article En | MEDLINE | ID: mdl-36422072

Purpose: To assess the qualitative relationship between liquid biopsy and conventional tissue biopsy. As a secondary target, we evaluated the relationship between the liquid biopsy results and the T stage, N stage, M stage, and compared to grading. Methods: The Local Ethics Committee of the "Università degli Studi della Campania Luigi Vanvitelli", with the internal resolution number 24997/2020 of 12.11.2020, approved this spontaneous prospective study. According to the approved protocol, patients with lung cancer who underwent Fine-Needle Aspiration Cytology (FNAC), CT-guided biopsy, and liquid biopsy were enrolled. A Yates chi-square test was employed to analyze differences in percentage values of categorical variables. A p-value < 0.05 was considered statistically significant. Data analysis was performed using the Matlab Statistic Toolbox (The MathWorks, Inc., Natick, MA, USA). Results: When a genetic mutation is present on the pathological examination, this was also detected on the liquid biopsy. ROS1 and PDL1 mutations were found in 2/29 patients, while EGFR Exon 21 was identified in a single patient. At liquid biopsy, 26 mutations were identified in the analyzed samples. The mutations with the highest prevalence rate in the study populations were: ALK (Ile1461Val), found in 28/29 patients (96.6%), EML4 (Lys398Arg), identified in 16/29 (55.2%) patients, ALK (Asp1529Glu), found in 14/29 (48.3%) patients, EGFR (Arg521Lys), found in 12/29 (41.4%) patients, ROS (Lys2228Gln), identified in 11/29 (37.9%) patients, ROS (Arg167Gln) and ROS (Ser2229Cys), identified in 10/29 (34.5%) patients, ALK (Lys1491Arg) and PIK3CA (Ile391Met), identified in 8/29 (27.6%) patients, ROS (Thr145Pro), identified in 6/29 (20.7%) patients, and ROS (Ser1109Leu), identified in 4/29 (13.8%) patients. No statistically significant differences can be observed in the mutation rate between the adenocarcinoma population and the squamous carcinoma population (p > 0.05, Yates chi-square test). Conclusions: We showed that, when a genetic mutation was detected in pathological examination, this was always detected by liquid biopsy, demonstrating a very high concordance rate of genomic testing between tissues and their corresponding mutations obtained by liquid biopsy, without cases of false-negative results. In addition, in our study, liquid biopsy highlighted 26 mutations, with the prevalence of ALK mutation in 96.6% of patients, supporting the idea that this approach could be an effective tool in cases with insufficient tumor tissue specimens or in cases where tissue specimens are not obtainable.

11.
Mar Drugs ; 20(10)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36286419

Marine microalgae are receiving great interest as sustainable sources of bioactive metabolites for health, nutrition and personal care. In the present study, a bioassay-guided screening allowed identifying an enriched fraction from SPE separation of the methanolic extract of the marine diatom Thalassiosira rotula with a chemically heterogeneous composition of cytotoxic molecules, including PUFAs, the terpene phytol, the carotenoid fucoxanthin and the phytosterol 24-methylene cholesterol (24-MChol). In particular, this latter was the object of deep investigation aimed to gain insight into the mechanisms of action activated in two tumour cell models recognised as resistant to chemical treatments, the breast MCF7 and the lung A549 cell lines. The results of our studies revealed that 24-MChol, in line with the most studied ß-sitosterol (ß-SIT), showed cytotoxic activity in a 3-30 µM range of concentration involving the induction of apoptosis and cell cycle arrest, although differences emerged between the two sterols and the two cancer systems when specific targets were investigated (caspase-3, caspase-9, FAS and TRAIL).


Diatoms , Phytosterols , Diatoms/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Sterols/pharmacology , Sterols/metabolism , Cholesterol/metabolism , Phytol
13.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Article En | MEDLINE | ID: mdl-35821533

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Homocystinuria , Methylenetetrahydrofolate Reductase (NADPH2) , Sirtuin 1 , Thrombosis , Animals , Genotype , Homocystinuria/drug therapy , Homocystinuria/metabolism , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mice , Muscle Spasticity , Psychotic Disorders/metabolism , Resveratrol/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thrombosis/drug therapy , Thrombosis/genetics , Thrombosis/metabolism , Thrombosis/prevention & control
14.
Mol Cancer ; 21(1): 125, 2022 06 09.
Article En | MEDLINE | ID: mdl-35681235

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Chromatin , Leukemia, Myeloid, Acute , Polycomb Repressive Complex 1 , Chromatin/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Mar Drugs ; 21(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36662197

In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.


Antineoplastic Agents , Biological Products , Neoplasms , Humans , Aquatic Organisms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/chemistry , Neoplasms/drug therapy , Computational Biology
16.
Front Oncol ; 11: 750315, 2021.
Article En | MEDLINE | ID: mdl-34778065

Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.

17.
Viruses ; 13(7)2021 06 29.
Article En | MEDLINE | ID: mdl-34209556

Vitis vinifera represents an important and renowned source of compounds with significant biological activity. Wines and winery bioproducts, such as grape pomace, skins, and seeds, are rich in bioactive compounds against a wide range of human pathogens, including bacteria, fungi, and viruses. However, little is known about the biological properties of vine leaves. The aim of this study was the evaluation of phenolic composition and antiviral activity of Vitis vinifera leaf extract against two human viruses: the Herpes simplex virus type 1 (HSV-1) and the pandemic and currently widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). About 40 phenolic compounds were identified in the extract by HPLC-MS/MS analysis: most of them were quercetin derivatives, others included derivatives of luteolin, kaempferol, apigenin, isorhamnetin, myricetin, chrysoeriol, biochanin, isookanin, and scutellarein. Leaf extract was able to inhibit both HSV-1 and SARS-CoV-2 replication in the early stages of infection by directly blocking the proteins enriched on the viral surface, at a very low concentration of 10 µg/mL. These results are very promising and highlight how natural extracts could be used in the design of antiviral drugs and the development of future vaccines.


Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , SARS-CoV-2/drug effects , Vitis/chemistry , A549 Cells , Animals , Biological Products/analysis , Biological Products/pharmacology , Cell Line , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Humans , MCF-7 Cells , Phenols/pharmacology , Plant Extracts/analysis , Tandem Mass Spectrometry , Vero Cells
18.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article En | MEDLINE | ID: mdl-33801599

MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.


Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcriptional Activation , Animals , Apoptosis , Carcinogenesis , Cell Differentiation , Cell Proliferation , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Epigenesis, Genetic , Epigenome , Genome, Human , Hematopoietic Stem Cells/cytology , Homeostasis , Humans , Kruppel-Like Transcription Factors/metabolism , Leukemia/metabolism , Lymphoma/metabolism , Proto-Oncogene Mas , Signal Transduction , Stem Cells/metabolism , Transcription Factors/metabolism
19.
Cancers (Basel) ; 13(4)2021 Feb 08.
Article En | MEDLINE | ID: mdl-33567618

Regulated cell death mechanisms are essential for the maintenance of cellular homeostasis. Evasion of cell death is one of the most important hallmarks of cancer. Necroptosis is a caspase independent form of regulated cell death, investigated as a novel therapeutic strategy to eradicate apoptosis resistant cancer cells. The process can be triggered by a variety of stimuli and is controlled by the activation of RIP kinases family as well as MLKL. The well-studied executor, RIPK1, is able to modulate key cellular events through the interaction with several proteins, acting as strategic crossroads of several molecular pathways. Little evidence is reported about its involvement in tumorigenesis. In this review, we summarize current studies on the biological relevance of necroptosis, its contradictory role in cancer and its function in cell fate control. Targeting necroptosis might be a novel therapeutic intervention strategy in anticancer therapies as a pharmacologically controllable event.

20.
ChemMedChem ; 16(6): 989-999, 2021 03 18.
Article En | MEDLINE | ID: mdl-33220015

Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50 : 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50HDAC3 =0.113 µM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.


Anilides/pharmacology , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Pyridines/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure , Pyridines/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
...