Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18511, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898631

ABSTRACT

Copulas are mathematical tools for modeling joint probability distributions. In the past 60 years they have become an essential analysis tool on classical computers in various fields. The recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages: performing tasks faster, requiring less memory, or, as we show, yielding better predictions. Studying the scalability of this quantum approach as both the precision and the number of modeled variables increase is crucial for its adoption in real-world applications. In this paper, we successfully apply a Quantum Circuit Born Machine (QCBM) based approach to modeling 3- and 4-variable copulas on trapped ion quantum computers. We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer. We observe decreased training efficacy due to the increased complexity in parameter optimization as the models scale up. To address this challenge, we introduce an annealing-inspired strategy that dramatically improves the training results. In our end-to-end tests, various configurations of the quantum models make a comparable or better prediction in risk aggregation tasks than the standard classical models.

2.
Membranes (Basel) ; 12(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35736281

ABSTRACT

Single cell microinjection provides precise tuning of the volume and timing of delivery into the treated cells; however, it also introduces workflow complexity that requires highly skilled operators and specialized equipment. Laser-based microinjection provides an alternative method for targeting a single cell using a common laser and a workflow that may be readily standardized. This paper presents experiments using a 1550 nm, 100 fs pulse duration laser with a repetition rate of 20 ns for laser-based microinjection and calculations of the hypothesized physical mechanism responsible for the experimentally observed permeabilization. Chinese Hamster Ovarian (CHO) cells exposed to this laser underwent propidium iodide uptake, demonstrating the potential for selective cell permeabilization. The agreement between the experimental conditions and the electropermeabilization threshold based on estimated changes in the transmembrane potential induced by a laser-induced plasma membrane temperature gradient, even without accounting for enhancement due to traditional electroporation, strengthens the hypothesis of this mechanism for the experimental observations. Compared to standard 800 nm lasers, 1550 nm fs lasers may ultimately provide a lower cost microinjection method that readily interfaces with a microscope and is agnostic to operator skill, while inducing fewer deleterious effects (e.g., temperature rise, shockwaves, and cavitation bubbles).

3.
Rev Sci Instrum ; 92(6): 064714, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243517

ABSTRACT

Gridded electron guns are key components of various electron beam based vacuum tubes. Mesh grids may be utilized for electron beam extraction and control. As part of the electron beam may be intercepted by the mesh grid, heating occurs, which could translate into performance degradation of the vacuum tube or even failure. This paper introduces an analytical model based on first physics principles for mesh grid heating in an electron gun, toward generating the upper bound for the intercepted electron beam power. 3D simulations and exploratory experiments for mesh grid heating in an electron gun directionally confirm the predictions of the analytical model. This analytical approach may be leveraged further when the upper bounds of mesh grid heating in electron guns are needed, as well as for adjusting mesh grid topology to increase its robustness against electron beam heating.

4.
PLoS One ; 16(4): e0249209, 2021.
Article in English | MEDLINE | ID: mdl-33891598

ABSTRACT

Activated platelet-rich plasma (PRP) has been used in the clinical settings of wound healing and regenerative medicine, with activation typically induced by the addition of bovine thrombin. To eliminate issues with availability, cost and potential side effects associated with bovine thrombin, ex vivo PRP activation using pulse electric fields (PEF) has been proposed and demonstrated. The present study characterizes the effect of PEF voltage and pulse width, in combination with a range of calcium concentrations, on clot formation, growth factor release, and serotonin (5-HT) release from dense granules. The main findings are: 1) increasing calcium concentrations with most PEF conditions leads to increased levels of PDGF and 5-HT release; 2) whether EGF levels increase or decrease with increasing calcium concentration depends on the specific PEF parameters; 3) the pattern of PDGF and EGF levels in supernatants suggest that these molecules are localized differently within platelets; 4) significant levels of PDGF, EGF, and 5-HT can be released without inducing clot formation or hemoglobin release. In conclusion, voltage, pulse width and calcium concentration can be used to control and tune the release of growth factors, serotonin and hemoglobin from PEF-activated PRP. Because growth factor requirements vary for different types of wounds and for wounds at different stages of healing, the unique balance of factors in supernatants of PEF-activated PRP may provide more clinically advantageous than the current standard of bovine thrombin-activated PRP.


Subject(s)
Electricity , Epidermal Growth Factor/analysis , Hemoglobins/analysis , Platelet-Derived Growth Factor/analysis , Platelet-Rich Plasma/metabolism , Serotonin/analysis , Blood Cell Count , Calcium/chemistry , Calcium/pharmacology , Enzyme-Linked Immunosorbent Assay , Epidermal Growth Factor/metabolism , Hemoglobins/metabolism , Humans , Platelet Activation/drug effects , Platelet-Derived Growth Factor/metabolism , Serotonin/metabolism
5.
Med Hypotheses ; 143: 110105, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721802

ABSTRACT

Clinicians have increasingly applied platelet-rich plasma (PRP) for wound healing treatments. Topical treatments commonly require biochemical agents such as bovine thrombin to activate PRP ex vivo for clotting and growth factor release to facilitate healing upon application to the wound of interest. Recent studies have explored electrical stimulation as an alternative to bovine thrombin for PRP activation due to the former's cost, workflow complexity and potentially significant side effects; however, both approaches require separating the PRP from whole blood (WB) prior to activation. Eliminating the separation (typically centrifugation) step would reduce the cost and duration of the clinical procedure, which may be critical in trauma and surgical applications. We hypothesize that electric pulses (EPs) can release growth factors from WB, as they do from PRP, without requiring centrifugation of WB into PRP. A pilot study for two donors demonstrates the potential for EP stimulated growth factor release from WB. This motivates future experiments assessing EP parameter optimization for WB activation and in vivo studies to determine the clinical benefits for topical treatments and, especially, for injections in orthopedic applications that already utilize non-treated/non-activated WB.


Subject(s)
Platelet-Derived Growth Factor , Platelet-Rich Plasma , Animals , Blood Platelets , Cattle , Electric Stimulation , Humans , Intercellular Signaling Peptides and Proteins , Pilot Projects
6.
Phys Med Biol ; 59(5): 1189-202, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24556567

ABSTRACT

We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2 × 4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 µm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 s per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 µs pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artifacts. The measured in-plane MTF showed 13 lp cm(-1) at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to achieve high image resolution and large axial coverage in a single gantry rotation.


Subject(s)
Algorithms , Lighting/instrumentation , Multidetector Computed Tomography/instrumentation , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL