Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Hum Mol Genet ; 32(6): 948-958, 2023 03 06.
Article En | MEDLINE | ID: mdl-36226585

Maf-family basic motif leucine zipper protein NRL specifies rod photoreceptor cell fate during retinal development and, in concert with homeodomain protein CRX and other regulatory factors, controls the expression of most rod-expressed genes including the visual pigment gene Rhodopsin (Rho). Transcriptional regulatory activity of NRL is modulated by post-translational modifications, especially phosphorylation, and mutations at specific phosphosites can lead to retinal degeneration. During our studies to elucidate NRL-mediated transcriptional regulation, we identified protein kinase CK2 in NRL-enriched complexes bound to Rho promoter-enhancer regions and in NRL-enriched high molecular mass fractions from the bovine retina. The presence of CK2 in NRL complexes was confirmed by co-immunoprecipitation from developing and adult mouse retinal extracts. In vitro kinase assay and bioinformatic analysis indicated phosphorylation of NRL at Ser117 residue by CK2. Co-transfection of Csnk2a1 cDNA encoding murine CK2 with human NRL and CRX reduced the bovine Rho promoter-driven luciferase expression in HEK293 cells and mutagenesis of NRL-Ser117 residue to Ala restored the reporter gene activity. In concordance, overexpression of CK2 in the mouse retina in vivo by electroporation resulted in reduction of Rho promoter-driven DsRed reporter expression as well as the transcript level of many phototransduction genes. Thus, our studies demonstrate that CK2 can phosphorylate Ser117 of NRL. Modulation of NRL activity by CK2 suggests intricate interdependence of transcriptional and signaling pathways in maintaining rod homeostasis.


Casein Kinase II , Eye Proteins , Animals , Cattle , Mice , Humans , Casein Kinase II/genetics , Casein Kinase II/metabolism , HEK293 Cells , Eye Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Retina/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-maf/metabolism
2.
eNeuro ; 9(5)2022.
Article En | MEDLINE | ID: mdl-36180221

Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.


Carrier Proteins , Retinal Rod Photoreceptor Cells , Animals , Female , Male , Mice , Light Signal Transduction , Mammals/metabolism , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Transducin/genetics , Transducin/metabolism , Carrier Proteins/metabolism
3.
BMC Biol ; 20(1): 68, 2022 03 21.
Article En | MEDLINE | ID: mdl-35307029

BACKGROUND: Functional complexity of the eukaryotic mitochondrial proteome is augmented by independent gene acquisition from bacteria since its endosymbiotic origins. Mammalian homologs of many ancestral mitochondrial proteins have uncharacterized catalytic activities. Recent forward genetic approaches attributed functions to proteins in established metabolic pathways, thereby limiting the possibility of identifying novel biology relevant to human disease. We undertook a bottom-up biochemistry approach to discern evolutionarily conserved mitochondrial proteins with catalytic potential. RESULTS: Here, we identify a Parkinson-associated DJ-1/PARK7-like protein-glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A), with bacterial evolutionary affinities although not from alphaproteobacteria. We demonstrate that GATD3A localizes to the mitochondrial matrix and functions as a deglycase. Through its amidolysis domain, GATD3A removes non-enzymatic chemical modifications produced during the Maillard reaction between dicarbonyls and amines of nucleotides and amino acids. GATD3A interacts with factors involved in mitochondrial mRNA processing and translation, suggestive of a role in maintaining integrity of important biomolecules through its deglycase activity. The loss of GATD3A in mice is associated with accumulation of advanced glycation end products (AGEs) and altered mitochondrial dynamics. CONCLUSIONS: An evolutionary perspective helped us prioritize a previously uncharacterized but predicted mitochondrial protein GATD3A, which mediates the removal of early glycation intermediates. GATD3A restricts the formation of AGEs in mitochondria and is a relevant target for diseases where AGE deposition is a pathological hallmark.


Gammaproteobacteria , Glycation End Products, Advanced , Animals , Gammaproteobacteria/metabolism , Glycation End Products, Advanced/metabolism , Mammals , Mice , Mitochondrial Proteins/genetics , Protein Deglycase DJ-1/metabolism
4.
Hum Mol Genet ; 31(13): 2137-2154, 2022 07 07.
Article En | MEDLINE | ID: mdl-35075486

Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.


Retinal Degeneration , Retinitis Pigmentosa , Animals , Cell Death/genetics , Disease Models, Animal , Mice , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/pathology
5.
J Vis Exp ; (174)2021 08 04.
Article En | MEDLINE | ID: mdl-34424254

Mitochondrial respiration is a critical energy-generating pathway in all cells, especially retinal photoreceptors that possess a highly active metabolism. In addition, photoreceptors also exhibit high aerobic glycolysis like cancer cells. Precise measurements of these metabolic activities can provide valuable insights into cellular homeostasis under physiological conditions and in disease states. High throughput microplate-based assays have been developed to measure mitochondrial respiration and various metabolic activities in live cells. However, a vast majority of these are developed for cultured cells and have not been optimized for intact tissue samples and for application ex vivo. Described here is a detailed step-by-step protocol, using microplate-based fluorescence technology, to directly measure oxygen consumption rate (OCR) as an indicator of mitochondrial respiration, as well as extracellular acidification rate (ECAR) as an indicator of glycolysis, in intact ex vivo retinal tissue. This method has been used to successfully assess metabolic activities in adult mouse retina and demonstrate its application in investigating cellular mechanisms of aging and disease.


Energy Metabolism , Glycolysis , Animals , Mice , Mitochondria/metabolism , Oxygen Consumption , Respiration , Retina
6.
PLoS Genet ; 16(12): e1009259, 2020 12.
Article En | MEDLINE | ID: mdl-33362196

Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1-/-) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1-/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1-/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.


Autophagy , Endocytosis , Guanine Nucleotide Exchange Factors/genetics , Neurogenesis , Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism , Animals , Female , Guanine Nucleotide Exchange Factors/metabolism , Male , Mice , Mice, Inbred BALB C , Photoreceptor Cells/cytology , Retinal Degeneration/genetics , Transcriptome
7.
Biochem J ; 477(23): 4473-4489, 2020 12 11.
Article En | MEDLINE | ID: mdl-33175092

Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.


ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic , Protein Processing, Post-Translational , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Methylation , Mycobacterium tuberculosis/genetics
8.
Cell Rep ; 31(3): 107525, 2020 04 21.
Article En | MEDLINE | ID: mdl-32320661

Aging-associated functional decline is accompanied by alterations in the epigenome. To explore DNA modifications that could influence visual function with age, we perform whole-genome bisulfite sequencing of purified mouse rod photoreceptors at four ages and identify 2,054 differentially methylated regions (DMRs). We detect many DMRs during early stages of aging and in rod regulatory regions, and some of these cluster at chromosomal hotspots, especially on chromosome 10, which includes a longevity interactome. Integration of methylome to age-related transcriptome changes, chromatin signatures, and first-order protein-protein interactions uncover an enrichment of DMRs in altered pathways that are associated with rod function, aging, and energy metabolism. In concordance, we detect reduced basal mitochondrial respiration and increased fatty acid dependency with retinal age in ex vivo assays. Our study reveals age-dependent genomic and chromatin features susceptible to DNA methylation changes in rod photoreceptors and identifies a link between DNA methylation and energy metabolism in aging.


Aging/genetics , DNA Methylation/genetics , Energy Metabolism/genetics , Retinal Rod Photoreceptor Cells/metabolism , Animals , Genome-Wide Association Study/methods , Humans , Male , Mice
9.
Invest Ophthalmol Vis Sci ; 59(15): 5957-5964, 2018 12 03.
Article En | MEDLINE | ID: mdl-30551203

Purpose: To test the hypothesis that mitochondrial respiration contributes to local changes in hydration involved in phototransduction-driven expansion of outer retina, as measured by structural responses on optical coherence tomography (OCT) and diffusion magnetic resonance imaging (MRI). Methods: Oxygen consumption rate and mitochondrial reserve capacity of freshly isolated C57BL/6 and 129S6/SvEvTac mouse retina were measured using a Seahorse Extracellular Flux Analyzer. Light-stimulated outer retina layer water content was determined by proton density MRI, structure and thickness by ultrahigh-resolution OCT, and water mobility by diffusion MRI. Results: Compared with C57BL/6 mice, 129S6/SvEvTac retina demonstrated a less robust mitochondrial respiratory basal level, with a higher reserve capacity and lower oxygen consumption in the light, suggesting a relatively lower production of water. C57BL/6 mice showed a light-triggered surge in water content of outer retina in vivo as well as an increase in hyporeflective bands, thickness, and water mobility. In contrast, light did not evoke augmented hydration in this region or an increase in hyporeflective bands or water mobility in the 129S6/SvEvTac outer retina. Nonetheless, we observed a significant but small increase in outer retinal thickness. Conclusions: These studies suggest that respiratory-controlled hydration in healthy retina is linked with a localized light-evoked expansion of the posterior retina in vivo and may serve as a useful biomarker of the function of photoreceptor/retinal pigment epithelium complex.


Body Water/metabolism , Light , Mitochondria/metabolism , Retina/radiation effects , Animals , Cell Respiration/physiology , Cytochromes a/metabolism , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Oxygen Consumption/physiology , Retina/metabolism , Tomography, Optical Coherence , Vision, Ocular/physiology
10.
Hum Mol Genet ; 26(12): 2218-2230, 2017 06 15.
Article En | MEDLINE | ID: mdl-28369466

In retinal photoreceptors, vectorial transport of cargo is critical for transduction of visual signals, and defects in intracellular trafficking can lead to photoreceptor degeneration and vision impairment. Molecular signatures associated with routing of transport vesicles in photoreceptors are poorly understood. We previously reported the identification of a novel rod photoreceptor specific isoform of Receptor Expression Enhancing Protein (REEP) 6, which belongs to a family of proteins involved in intracellular transport of receptors to the plasma membrane. Here we show that loss of REEP6 in mice (Reep6-/-) results in progressive retinal degeneration. Rod photoreceptor dysfunction is observed in Reep6-/- mice as early as one month of age and associated with aberrant accumulation of vacuole-like structures at the apical inner segment and reduction in selected rod phototransduction proteins. We demonstrate that REEP6 is detected in a subset of Clathrin-coated vesicles and interacts with the t-SNARE, Syntaxin3. In concordance with the rod degeneration phenotype in Reep6-/- mice, whole exome sequencing identified homozygous REEP6-E75K mutation in two retinitis pigmentosa families of different ethnicities. Our studies suggest a critical function of REEP6 in trafficking of cargo via a subset of Clathrin-coated vesicles to selected membrane sites in retinal rod photoreceptors.


Membrane Transport Proteins/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Clathrin-Coated Vesicles/metabolism , Eye Proteins/genetics , Light Signal Transduction , Membrane Proteins , Membrane Transport Proteins/genetics , Mice , Mice, Knockout , Mutation , Photoreceptor Cells, Vertebrate/metabolism , Protein Isoforms/metabolism , Protein Transport , Qa-SNARE Proteins/metabolism , Retinal Degeneration/metabolism , Retinitis Pigmentosa/genetics , SNARE Proteins/metabolism
11.
Invest Ophthalmol Vis Sci ; 56(13): 8428-36, 2015 Dec.
Article En | MEDLINE | ID: mdl-26747773

PURPOSE: Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. METHODS: Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. RESULTS: We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl-/- retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1-/- mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. CONCLUSIONS: We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges.


Energy Metabolism/physiology , Mitochondria/metabolism , Oxidative Stress , Oxygen Consumption/physiology , Retinal Cone Photoreceptor Cells/metabolism , Animals , Cell Death , Mice , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/cytology
12.
Hum Mol Genet ; 23(8): 2132-44, 2014 Apr 15.
Article En | MEDLINE | ID: mdl-24301678

Phototransduction machinery in vertebrate photoreceptors is contained within the membrane discs of outer segments. Daily renewal of 10% of photoreceptor outer segments requires stringent control of gene expression. Rhodopsin constitutes over 90% of the protein in rod discs, and its altered expression or transport is associated with photoreceptor dysfunction and/or death. Two cis-regulatory sequences have been identified upstream of the rhodopsin transcription start site. While the proximal promoter binds to specific transcription factors, including NRL and CRX, the rhodopsin enhancer region (RER) reportedly contributes to precise and high-level expression of rhodopsin in vivo. Here, we report the identification of RER-bound proteins by mass spectrometry. We validate the binding of NonO (p54(nrb)), a protein implicated in coupling transcription to splicing, and three NonO-interacting proteins-hnRNP M, Ywhaz and Ppp1ca. NonO and its interactors can activate rhodopsin promoter in HEK293 cells and function synergistically with NRL and CRX. DNA-binding domain of NonO is critical for rhodopsin promoter activation. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analysis demonstrates high occupancy of NonO at rhodopsin and a subset of phototransduction genes. Furthermore, shRNA knockdown of NonO in mouse retina leads to loss of rhodopsin expression and rod cell death, which can be partially rescued by a C-terminal NonO construct. RNA-seq analysis of the NonO shRNA-treated retina revealed splicing defects and altered expression of genes, specifically those associated with phototransduction. Our studies identify an important contribution of NonO and its interacting modulator proteins in enhancing rod-specific gene expression and controlling rod homeostasis.


14-3-3 Proteins/metabolism , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Protein Phosphatase 1/metabolism , RNA-Binding Proteins/metabolism , Rhodopsin/metabolism , 14-3-3 Proteins/genetics , Animals , Biomarkers/metabolism , Blotting, Western , Cattle , Cells, Cultured , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Gene Expression Profiling , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunoenzyme Techniques , Immunoprecipitation , Mice , Mice, Inbred C57BL , Nuclear Matrix-Associated Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Phosphatase 1/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction , Retina/cytology , Retina/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/genetics
13.
Development ; 140(6): 1330-41, 2013 Mar.
Article En | MEDLINE | ID: mdl-23406904

Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.


Cell Membrane Permeability/physiology , DNA (Cytosine-5-)-Methyltransferases/genetics , Morphogenesis/genetics , Retinal Photoreceptor Cell Outer Segment/physiology , Retinal Pigment Epithelium/physiology , Animals , Cell Membrane Permeability/genetics , Cell Polarity/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation/genetics , Embryo, Mammalian , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice , Mice, Transgenic , Microarray Analysis , Morphogenesis/physiology , Organ Specificity/genetics , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Pigment Epithelium/embryology , Retinal Pigment Epithelium/growth & development , Retinal Pigment Epithelium/metabolism , Transcriptome
14.
Methods Mol Biol ; 884: 353-61, 2012.
Article En | MEDLINE | ID: mdl-22688719

Conjugation of SUMO (small ubiquitin-related modifier 1) is a critical posttranslational modification, with significant impact on protein function/activity. Here, we describe direct SUMOylation of GST (glutathione S-transferase)-fusion protein and immunoprecipitation assays for investigating SUMOylation of any protein of interest. We have employed these methods to examine SUMOylation of the basic-motif leucine zipper transcription factor NRL.


Basic-Leucine Zipper Transcription Factors/metabolism , Eye Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Sumoylation , Cell Line , Humans , Immunoprecipitation/methods , Recombinant Fusion Proteins/metabolism
15.
Mol Vis ; 18: 1123-46, 2012.
Article En | MEDLINE | ID: mdl-22605924

PURPOSE: To define gene expression changes associated with diabetic retinopathy in a mouse model using next generation sequencing, and to utilize transcriptome signatures to assess molecular pathways by which pharmacological agents inhibit diabetic retinopathy. METHODS: We applied a high throughput RNA sequencing (RNA-seq) strategy using Illumina GAIIx to characterize the entire retinal transcriptome from nondiabetic and from streptozotocin-treated mice 32 weeks after induction of diabetes. Some of the diabetic mice were treated with inhibitors of receptor for advanced glycation endproducts (RAGE) and p38 mitogen activated protein (MAP) kinase, which have previously been shown to inhibit diabetic retinopathy in rodent models. The transcripts and alternatively spliced variants were determined in all experimental groups. RESULTS: Next generation sequencing-based RNA-seq profiles provided comprehensive signatures of transcripts that are altered in early stages of diabetic retinopathy. These transcripts encoded proteins involved in distinct yet physiologically relevant disease-associated pathways such as inflammation, microvasculature formation, apoptosis, glucose metabolism, Wnt signaling, xenobiotic metabolism, and photoreceptor biology. Significant upregulation of crystallin transcripts was observed in diabetic animals, and the diabetes-induced upregulation of these transcripts was inhibited in diabetic animals treated with inhibitors of either RAGE or p38 MAP kinase. These two therapies also showed dissimilar regulation of some subsets of transcripts that included alternatively spliced versions of arrestin, neutral sphingomyelinase activation associated factor (Nsmaf), SH3-domain GRB2-like interacting protein 1 (Sgip1), and axin. CONCLUSIONS: Diabetes alters many transcripts in the retina, and two therapies that inhibit the vascular pathology similarly inhibit a portion of these changes, pointing to possible molecular mechanisms for their beneficial effects. These therapies also changed the abundance of various alternatively spliced versions of signaling transcripts, suggesting a possible role of alternative splicing in disease etiology. Our studies clearly demonstrate RNA-seq as a comprehensive strategy for identifying disease-specific transcripts, and for determining comparative profiles of molecular changes mediated by candidate drugs.


Diabetic Retinopathy/genetics , Gene Expression/drug effects , RNA, Messenger/biosynthesis , Retina/metabolism , Transcriptome/genetics , Alternative Splicing , Animals , Axin Protein/genetics , Axin Protein/metabolism , Biomarkers, Pharmacological/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallins/genetics , Crystallins/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/etiology , Diabetic Retinopathy/metabolism , Disease Models, Animal , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Protein Kinase Inhibitors/therapeutic use , Receptor for Advanced Glycation End Products , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Retina/pathology , Transcriptome/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics
16.
PLoS One ; 7(5): e35865, 2012.
Article En | MEDLINE | ID: mdl-22563472

Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy.


Carrier Proteins/genetics , Disease Models, Animal , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/genetics , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/metabolism , Electroretinography , Exons/genetics , Eye Proteins/metabolism , Female , Humans , Immunoblotting , Immunohistochemistry , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Sequence Data , Retina/metabolism , Retina/pathology , Retina/physiopathology , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Reverse Transcriptase Polymerase Chain Reaction , Rhodopsin/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
17.
J Virol ; 85(17): 8625-34, 2011 Sep.
Article En | MEDLINE | ID: mdl-21697480

Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.


Capsid Proteins/chemistry , Capsid Proteins/metabolism , Disulfides/metabolism , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/metabolism , Animals , Chlorocebus aethiops , Dithiothreitol/metabolism , Ethylmaleimide/metabolism , Herpesvirus 1, Human/drug effects , Models, Molecular , Reducing Agents/metabolism , Vero Cells , Virion/ultrastructure
18.
J Virol ; 85(17): 8616-24, 2011 Sep.
Article En | MEDLINE | ID: mdl-21593161

The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K. Nellissery, R. Szczepaniak, C. Lamberti, and S. K. Weller, J. Virol. 81:8868-8877, 2007). We now demonstrate that intersubunit disulfide bonds exist between monomeric subunits and contribute to portal ring formation and/or stability. Intersubunit disulfide bonds were detected in purified portal rings by SDS-PAGE under nonreducing conditions. Furthermore, the treatment of purified portal rings with dithiothreitol (DTT) resulted in the disruption of the rings, suggesting that disulfide bonds confer stability to this complex structure. The UL6 protein contains nine cysteines that were individually mutated to alanine. Two of these mutants, C166A and C254A, failed to complement a UL6 null mutant in a transient complementation assay. Furthermore, viral mutants bearing the C166A and C254A mutations failed to produce infectious progeny and were unable to cleave or package viral DNA. In cells infected with C166A or C254A, B capsids were produced which contained UL6 at reduced levels compared to those seen in wild-type capsids. In addition, C166A and C254A mutant proteins expressed in insect cells infected with recombinant baculovirus failed to form ring structures. Cysteines at positions 166 and 254 thus appear to be required for intersubunit disulfide bond formation. Taken together, these results indicate that disulfide bond formation is required for portal ring formation and/or stability and for the production of procapsids that are capable of encapsidation.


Disulfides/metabolism , Herpesvirus 1, Human/physiology , Protein Multimerization , Viral Proteins/metabolism , Virus Assembly , Amino Acid Substitution/genetics , Animals , Cell Line , Cysteine/genetics , Electrophoresis, Polyacrylamide Gel , Gene Deletion , Genetic Complementation Test , Mutagenesis, Site-Directed , Protein Stability , Protein Subunits/metabolism , Viral Proteins/chemistry
19.
J Biol Chem ; 285(33): 25637-44, 2010 Aug 13.
Article En | MEDLINE | ID: mdl-20551322

Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.


Basic-Leucine Zipper Transcription Factors/physiology , Photoreceptor Cells/cytology , Photoreceptor Cells/metabolism , SUMO-1 Protein/metabolism , Amino Acid Sequence , Animals , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/physiology , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Mutant Strains , Molecular Chaperones/metabolism , Molecular Sequence Data , Orphan Nuclear Receptors/genetics , Promoter Regions, Genetic/genetics , Protein Inhibitors of Activated STAT/metabolism , Rhodopsin/genetics , Sequence Homology, Amino Acid
20.
J Virol ; 81(17): 8868-77, 2007 Sep.
Article En | MEDLINE | ID: mdl-17581990

The herpes simplex virus type 1 UL6 protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for encapsidation of the viral genome. To characterize UL6 protein domains that are involved in intersubunit interactions and interactions with other capsid proteins, we engineered a set of deletion mutants spanning the entire gene. Three deletion constructs, D-5 (Delta 198-295), D-6 (Delta 322-416), and D-LZ (Delta 409-473, in which a putative leucine zipper was removed), were introduced into the viral genome. All three mutant viruses produced only B capsids, indicating a defect in encapsidation. Western blot analysis showed that the UL6 protein was present in the capsids isolated from two mutants, D-6 and D-LZ. The protein encoded by D-5, on the other hand, was not associated with capsids and was instead localized in the cytoplasm of the infected cells, indicating that this deletion affected the nuclear transport of the portal protein. The UL6 protein from the KOS strain (wild type) and the D-6 mutant were purified from insect cells infected with recombinant baculoviruses and shown to form ring structures as assessed by sucrose gradient centrifugation and electron microscopy. In contrast, the D-LZ mutant protein formed aggregates that sedimented throughout the sucrose gradient as a heterogeneous mixture and did not yield stable ring structures. A mutant (L429E L436E) in which two of the heptad leucines of the putative zipper were replaced with glutamate residues also failed to form stable rings. Our results suggest that the integrity of the leucine zipper region is important for oligomer interactions and stable ring formation, which in turn are required for genome encapsidation.


Capsid Proteins/metabolism , Capsid Proteins/physiology , Herpesvirus 1, Human/physiology , Leucine Zippers/genetics , Protein Interaction Mapping , Virus Assembly/physiology , Active Transport, Cell Nucleus , Amino Acid Sequence , Amino Acid Substitution , Animals , Capsid/chemistry , Capsid Proteins/chemistry , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytoplasm/chemistry , Insecta/cytology , Macromolecular Substances/isolation & purification , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Sequence Alignment , Sequence Deletion , Vero Cells , Viral Proteins
...