Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34452998

ABSTRACT

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Subject(s)
Breast Neoplasms/drug therapy , Estrogen Antagonists/chemistry , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Crystallography, X-Ray , Female , Humans , Protein Binding , Protein Conformation , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Nat Chem Biol ; 17(3): 307-316, 2021 03.
Article in English | MEDLINE | ID: mdl-33510451

ABSTRACT

Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucose Transporter Type 4/genetics , Muscular Atrophy/drug therapy , Receptors, Glucocorticoid/chemistry , Signal Transduction/drug effects , A549 Cells , Allosteric Regulation , Animals , Anti-Inflammatory Agents/chemical synthesis , Cell Line, Transformed , Gene Expression Regulation , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Humans , Lipopolysaccharides/administration & dosage , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Rats , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL