Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(19): e202300254, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36855012

ABSTRACT

The first consistent series of mononuclear 17-electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X-ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0 (CO)(CNp-F-ArDArF2 )4 ] (M=Mn, Tc, Re; ArDArF2 =2,6-(3,5-(CF3 )2 C6 H3 )2 C6 H2 F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen-solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large 99 Tc and 185,187 Re hyperfine interactions for one component. High-field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex.

2.
Nat Commun ; 13(1): 2764, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589714

ABSTRACT

2 + 2 Photocycloadditions are idealized, convergent construction approaches of 4-membered heterocyclic rings, including azetidines. However, methods of direct excitation are limited by the unfavorable photophysical properties of imines and electronically unbiased alkenes. Here, we report copper-catalyzed photocycloadditions of non-conjugated imines and alkenes to produce a variety of substituted azetidines. Design principles allow this base metal-catalyzed method to achieve 2 + 2 imine-olefin photocycloaddition via selective alkene activation through a coordination-MLCT pathway supported by combined experimental and computational mechanistic studies.


Subject(s)
Alkenes , Azetidines , Catalysis , Copper , Imines
3.
Inorg Chem ; 59(23): 16872-16881, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33197170

ABSTRACT

A new synthetic route to complexes of the type Ni(P2N2)22+ with highly functionalized phosphine substituents and the investigation of immobilization effects on these catalysts is reported. Ni(P2N2)22+ complexes have been extensively studied as homogeneous and surface-attached molecular electrocatalysts for the hydrogen evolution reaction (HER). A synthesis based on postsynthetic modification of PArBr2NPh2 was developed and is described here. Phosphonate-modified ligands and their corresponding nickel complexes were isolated and characterized. Subsequent deprotection of the phosphonic ester derivatives provided the first Ni(P2N2)22+ catalyst that can be covalently attached via pendent phosphonate groups to an electrode without involvement of the important pendent amine groups. Mesoporous TiO2 electrodes were surface modified by attachment of the new phosphonate functionalized Ni(P2N2)22+ complexes, and these provided electrocatalytic materials that proved to be competent and stable for sustained HER in aqueous solution at mild pH and low overpotential. We directly compared the new ligand to a previously reported complex that utilized the amine moiety for surface attachment. Using HER as the benchmark reaction, the P-attached catalyst showed a marginally (9-14%) higher turnover number than its N-attached counterpart.

4.
Angew Chem Int Ed Engl ; 58(43): 15329-15333, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31418523

ABSTRACT

Relative to other cyclic poly-phosphorus species (that is, cyclo-Pn ), the planar cyclo-P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4 -P4 complexes are presented that can be viewed as the simple coordination of the [cyclo-P4 ]2- dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo-P4 complexes Mo(η4 -P4 )I2 (CO)(CNArDipp2 )2 and Mo(η4 -P4 )(CO)2 (CNArDipp2 )2 with KC8 produces the dianionic, three-legged piano stool complexes, [Mo(η4 -P4 )(CO)(CNArDipp2 )2 ]2- and [Mo(η4 -P4 )(CO)2 (CNArDipp2 )]2- , respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6 -benzene complex (η6 -C6 H6 )Mo(CO)3 regarding the metal-center valence state and electronic population of the planar-cyclic ligand π system.

5.
Angew Chem Int Ed Engl ; 56(25): 7195-7199, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28493627

ABSTRACT

While interest in cooperative reactivity of transition metals and Lewis acids is receiving significant attention, the scope of known reactions that directly exploit the polarized reverse-dative σ-bond of metal-borane complexes (i.e., M→BR3 ) remains limited. Described herein is that the platinum (boryl)iminomethane (BIM) complex [Pt(κ2 -N,B-Cy2 BIM)(CNArDipp2 )] can effect the oxidative insertion of a range of unsaturated organic substrates, including azides, isocyantes, and nitriles, as well as CO2 and elemental sulfur (S8 ). In addition, alkyl migration processes available to the BIM framework allow for post-insertion reaction sequences resulting in product release from the metal center.

6.
Inorg Chem ; 54(24): 11831-41, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26641309

ABSTRACT

The structural properties of a series of scandium inorganic acid derivatives were determined. The reaction of Sc(0) with concentrated aqueous hydrochloric acid led to the isolation of [(H2O)5Sc(µ-OH)]24Cl·2H2O (1). Compound 1 was modified with a series of inorganic acids (i.e., HNO3, H3PO4, and H2SO4) at room temperature and found to form {[(H2O)4Sc(κ(2)-NO3)(µ-OH)]NO3}2 (2a), [(H2O)4Sc(κ(2)-NO3)2]NO3·H2O (2b) (at reflux temperatures), {6[H][Sc(µ-PO4)(PO4)]6}n (3), and [H][Sc(µ3-SO4)2]·2H2O (4a). Additional organosulfonic acid derivatives were investigated, including tosylic acid (H-OTs) to yield {[(H2O)4Sc(OTs)2]OTs}·2H2O (4b) in H2O and [(DMSO)3Sc(OTs)3] (4c) in dimethyl sulfoxide and triflic acid (H-OTf) to form [Sc(H2O)8]OTf3 (4d). Other organic acid modifications of 1 were also investigated, and the final structures were determined to be {([(H2O)2Sc(µ-OAc)2]Cl)6}n (5) from acetic acid (H-OAc) and [Sc(µ-TFA)3Sc(µ-TFA)3]n (6) from trifluoroacetic acid (H-TFA). In addition to single-crystal X-ray structures, the compounds were identified by solid-state and solution-state (45)Sc nuclear magnetic resonance spectroscopic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...