Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
ChemMedChem ; : e202400477, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136611

ABSTRACT

The formation and characterization of new diamagnetic ruthenium uracil mono-imine compounds: [(η6-p-cymene)RuII(L)Cl][BF4] (L = H2urpda = 5-((pyridin-2-yl)methyleneamino)-6-aminouracil) for 1, urdpy = 6-amino-1,3-dimethyl-5-((pyridin-2-ylmethylene)amino)uracil) for 2 or urqda = 5-((quinolin-2-yl)methyleneamino)-6-aminouracil) for 3); cis-[RuII(L)(bipy)2] (L =  urpy = 5-((pyridin-2-yl)methyleneamino)uracil) for 4 and H2dadp = 5,6-diaminouracil for 5) are described. A paramagnetic ruthenium uracil Schiff base compound,  trans-[RuIV(L)(PPh3)Cl2] (L = H2urpda for 6) was also formed. Various physicochemical techniques were utilized to characterize the novel ruthenium compounds. Similarly, the stabilities of 1 - 3 and 6 monitored in chloro-containing and the non-coordinating solvent, dichloromethane show that they are kinetically inert, whereas, in a high nucleophilic environment, the chloride co-ligands of these ruthenium complexes were rapidly substituted by DMSO. In contrast, the substitution of the labile co-ligands for these ruthenium complexes by DMSO molecules in a high chloride content was suppressed. Solution chemical reactivities of the different ruthenium complexes were rationalized by density functional theory computations. Furthermore, the binding affinities and strengths between BSA and the respective ruthenium complexes were monitored using fluorescence spectroscopy. In addition, the in vitro anti-diabetic activities of the novel metal complexes were assessed in selected skeletal muscle and liver cell lines.

2.
J Obstet Gynaecol ; 44(1): 2379498, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39084241

ABSTRACT

BACKGROUND: Prediabetes (PD) is associated with intermediate hyperglycaemia, dyslipidaemia, reduced nitric oxide (NO) bioavailability and moderate hypertension. All these factors are risk factor for preeclampsia (PE). However, the effects of the PD on placental function have not been shown. Accordingly, this study sought to investigate a possible link between maternal PD and the risk of developing PE. METHODS: Pregnant female Sprague-Dawley rats (N = 18) were divided into normal, preeclamptic and prediabetic groups (n = 6 in each group) to study the effects of maternal PD on placenta function over the period of 19 days. Blood glucose and blood pressure were measured on gestational day (GND) 0, 9 and 18. Placental vascular endothelial growth factor (VEGF), placenta growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) mRNA expression were measured terminally. Data were analysed using ANOVA followed by the Tukey-Kramer post hoc test. Values of p < .05 were used to indicate statistical significance. RESULTS: Maternal PD and PE significantly increased blood glucose, decrease NO concentration and increase in MAP by comparison to the normal pregnant control group. Maternal PD significantly decreased VEGF, PlGF mRNA expression with a slight increase in sFlt-1 mRNA expression comparison to the normal pregnant control group. CONCLUSIONS: Maternal PD is associated with placental dysfunction due to impaired glucose handling, endothelial dysfunction and an imbalance in angiogenic and antiangiogenic factors. Therefore, maternal PD is a risk factor of PE.


People with prediabetes (PD) are at risk of developing type 2 diabetes. Studies have shown that PD can cause blood vessel problems in both men and women. However, there have not been any studies on prediabetic pregnant women, so we do not know much about the pregnancy problems they might face. Looking into new factors related to blood vessel growth and health in PD could help us understand how to diagnose and manage PD during pregnancy. This could reduce the risk of problems similar to pre-eclampsia. Research in this area will help mothers and their doctors be more aware of the complications PD can cause during pregnancy. This could lead to fewer health problems and deaths for both mothers and babies linked to type 2 diabetes.


Subject(s)
Blood Glucose , Placenta Growth Factor , Placenta , Pre-Eclampsia , Prediabetic State , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-1 , Female , Animals , Pregnancy , Pre-Eclampsia/physiopathology , Pre-Eclampsia/etiology , Prediabetic State/complications , Prediabetic State/physiopathology , Placenta Growth Factor/blood , Rats , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/metabolism , Placenta/metabolism , Risk Factors , Vascular Endothelial Growth Factor Receptor-1/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Blood Pressure , Nitric Oxide/metabolism , Nitric Oxide/blood , Disease Models, Animal
3.
Biomedicines ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927579

ABSTRACT

Research has identified fetal risk factors for adult diseases, forming the basis for the Developmental Origins of Health and Disease (DOHaD) hypothesis. DOHaD suggests that maternal insults during pregnancy cause structural and functional changes in fetal organs, increasing the risk of chronic diseases like type 2 diabetes mellitus (T2DM) in adulthood. It is proposed that altered maternal physiology, such as increased glucocorticoid (GC) levels associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis in maternal stress and T2DM during pregnancy, exposes the fetus to excess GC. Prenatal glucocorticoid exposure reduces fetal growth and programs the fetal HPA axis, permanently altering its activity into adulthood. This programmed HPA axis is linked to increased risks of hypertension, cardiovascular diseases, and mental disorders in adulthood. With the global rise in T2DM, particularly among young adults of reproductive age, it is crucial to prevent its onset. T2DM is often preceded by a prediabetic state, a condition that does not show any symptoms, causing many to unknowingly progress to T2DM. Studying prediabetes is essential, as it is a reversible stage that may help prevent T2DM-related pregnancy complications. The existing literature focuses on HPA axis dysregulation in T2DM pregnancies and its link to fetal programming. However, the effects of prediabetes on HPA axis function, specifically glucocorticoid in pregnancy and fetal outcomes, are not well understood. This review consolidates research on T2DM during pregnancy, its impact on fetal programming via the HPA axis, and possible links with pregestational prediabetes.

4.
Plants (Basel) ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931040

ABSTRACT

The treatment and management of diabetes mellitus (DM) with conventional therapies, such as insulin injections and oral hypoglycemic agents, present significant challenges due to their side effects and burdensome administration. Therapies often manage symptoms rather than addressing insulin regulation, akin to medications like thiazolidinediones and glinides, which resemble many medicinal plants. Medicinal plants offer potential alternative treatments due to bioactive compounds targeting diabetes causes. We aimed to explore the antidiabetic potential of two medicinal plants, Psidium guajava and Seriphium plumosum L., by investigating their phytochemical constituents, medicinal uses, pharmacological actions, and mechanisms. This review followed specific guidelines and searched databases including PubMed, Scopus, ScienceDirect, and Web of Science for studies on medicinal plants and DM. Eligible studies underwent quality assessment and were categorized based on their design and interventions for data synthesis. This review identified the phytochemical constituents in Psidium guajava and Seriphium plumosum L., including tannins, flavonoids, phenols, and steroids, exerting antidiabetic effects through various mechanisms like antioxidant activity, anti-inflammatory effects, stimulation of insulin secretion, glucose regulation, and inhibition of carbohydrate-digesting enzymes. Psidium guajava and Seriphium plumosum L. exhibit promising antidiabetic potential, offering alternative approaches to diabetes management. Polyherbalism, combining multiple plant extracts, may enhance therapeutic efficacy in diabetes treatment. Comprehensive research is needed to explore the combined therapeutic effects of these plants and develop more effective antidiabetic treatments. This review highlights the importance of harnessing natural resources to combat the global burden of DM. Further research is warranted to fully explore the combined therapeutic effects of these plants and develop novel treatments.

5.
Medicine (Baltimore) ; 103(21): e33095, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788045

ABSTRACT

BACKGROUND: The incidence and prevalence of prediabetes has become a global concern. The risk factors of prediabetes, such as insulin resistance, adiposity, lipotoxicity and obesity, in conjunction with the alteration of the renin-angiotensin-aldosterone system (RAAS), have been positively correlated with the high morbidity and mortality rate. Thus, this systematic review seeks to establish the relationship between the risk factors of prediabetes, namely insulin resistance adiposity, lipotoxicity, obesity and the RAAS. Therefore, a synthesis of these risk factors, their clinical indicators and the RAAS components will be compiled in order to establish the association between the RAAS alteration and obesity in prediabetic patients. METHODS: This protocol for a systematic review was developed in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) standards. This will be accomplished by searching clinical Medical Subject Headings categories in MEDLINE with full texts, EMBASE, Web of Science, PubMed, Cochrane Library, Academic Search Complete, ICTRP and ClinicalTrial.gov. Reviewers will examine all of the findings and select the studies that meet the qualifying criteria. To check for bias, the Downs and Black Checklist will be used, followed by a Review Manager v5. A Forrest plot will be used for the meta-analysis and sensitivity analysis. Furthermore, the strength of the evidence will be assessed utilizing the Grading of Recommendations Assessment, Development, and Evaluation procedure (GRADE). The protocol has been registered with PROSPERO CRD42022320252. This systematic review and meta-analysis will include published randomized clinical trials, observational studies and case-control studies from the years 2000 to 2022.


Subject(s)
Adipose Tissue , Meta-Analysis as Topic , Prediabetic State , Renin-Angiotensin System , Systematic Reviews as Topic , Humans , Risk Factors , Adipose Tissue/metabolism , Renin-Angiotensin System/physiology , Obesity/complications , Research Design , Ethnicity , Insulin Resistance
6.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791468

ABSTRACT

Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Prediabetic State , Animals , Female , Male , Pregnancy , Rats , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Corticosterone/blood , Corticosterone/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypothalamo-Hypophyseal System/metabolism , Insulin Resistance , Pituitary-Adrenal System/metabolism , Prediabetic State/metabolism , Prenatal Exposure Delayed Effects/metabolism , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics
7.
J Inorg Biochem ; 255: 112541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554578

ABSTRACT

Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Diabetes Mellitus, Experimental , Ruthenium , Rats , Animals , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Serum Albumin, Bovine/chemistry , Ruthenium/chemistry , Dimethyl Sulfoxide , Hypoglycemic Agents/pharmacology , Chlorides , Diabetes Mellitus, Experimental/drug therapy , Pyridines/chemistry , Peptides , Ruthenium Compounds , Glucose , Phosphates , Antineoplastic Agents/pharmacology , Ligands
8.
BMJ Open Diabetes Res Care ; 12(1)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413177

ABSTRACT

Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which is further associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Several studies have shown that HPA axis hyperactivity is heightened in the chronic hyperglycemic state with severe hyperglycemic events more likely to result in a depressive disorder. The HPA axis is also regulated by the immune system. Upon stress, under homeostatic conditions, the immune system is activated via the sympatho-adrenal-medullary axis resulting in an immune response which secretes proinflammatory cytokines. These cytokines aid in the activation of the HPA axis during stress. However, in T2DM, where there is persistent hyperglycemia, the immune system is dysregulated resulting in the elevated concentrations of these cytokines. The HPA axis, already activated by the hyperglycemia, is further activated by the cytokines which all contribute to a diagnosis of depression in patients with T2DM. However, the onset of T2DM is often preceded by pre-diabetes, a reversible state of moderate hyperglycemia and insulin resistance. Complications often seen in T2DM have been reported to begin in the pre-diabetic state. While the current management strategies have been shown to ameliorate the moderate hyperglycemic state and decrease the risk of developing T2DM, research is necessary for clinical studies to profile these direct effects of moderate hyperglycemia in pre-diabetes on the HPA axis and the indirect effects moderate hyperglycemia may have on the HPA axis by investigating the components of the immune system that play a role in regulating this pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Prediabetic State , Humans , Hypothalamo-Hypophyseal System/metabolism , Depression/epidemiology , Depression/etiology , Prediabetic State/metabolism , Pituitary-Adrenal System/metabolism , Hyperglycemia/metabolism , Cytokines/metabolism
9.
Front Pharmacol ; 15: 1355171, 2024.
Article in English | MEDLINE | ID: mdl-38362147

ABSTRACT

In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of ß-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.

10.
J Immunotoxicol ; 21(1): 2290282, 2024 12.
Article in English | MEDLINE | ID: mdl-38099331

ABSTRACT

The prevalence of pre-diabetes is increasing in rapidly urbanizing cities, especially in individuals aged 25 - 45 years old. Studies also indicate that this condition is associated with aberrant immune responses that are also influenced by environmental factors. This study sought to investigate changes in the concentration of immune cells and select inflammatory markers in patients with pre-diabetes in Durban, South Africa. Blood samples collected from King Edward Hospital, after obtaining ethics approval, were divided into non-diabetic (ND), pre-diabetic (PD) and type 2 diabetic (T2D) using ADA criteria. In each sample, the concentration of immune cells and select inflammatory markers were determined. The results showed a significant increase in eosinophil and basophil levels in the PD group as compared to the ND group. Compared to ND, the PD and T2D groups had significant increases in serum TNFα, CD40L and fibrinogen concentrations. Additionally, there were decreases in serum CRP, IL-6, and P-selectin in the PD group while these markers increased in the T2D group. These findings were indicative of immune activation and highlight the impact of pre-diabetes in this population. More studies are recommended with a higher number of samples that are stratified by gender and represent the gender ratio in the city.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Adult , Middle Aged , Prediabetic State/epidemiology , South Africa/epidemiology , Biomarkers , Tumor Necrosis Factor-alpha , Diabetes Mellitus, Type 2/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL