Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
2.
Nat Chem ; 16(7): 1160-1168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38589626

ABSTRACT

Carbon capture, utilization and storage is a key yet cost-intensive technology for the fight against climate change. Single-component water-lean solvents have emerged as promising materials for post-combustion CO2 capture, but little is known regarding their mechanism of action. Here we present a combined experimental and modelling study of single-component water-lean solvents, and we find that CO2 capture is accompanied by the self-assembly of reverse-micelle-like tetrameric clusters in solution. This spontaneous aggregation leads to stepwise cooperative capture phenomena with highly contrasting mechanistic and thermodynamic features. The emergence of well-defined supramolecular architectures displaying a hydrogen-bonded internal core, reminiscent of enzymatic active sites, enables the formation of CO2-containing molecular species such as carbamic acid, carbamic anhydride and alkoxy carbamic anhydrides. This system extends the scope of adducts and mechanisms observed during carbon capture. It opens the way to materials with a higher CO2 storage capacity and provides a means for carbamates to potentially act as initiators for future oligomerization or polymerization of CO2.

3.
JACS Au ; 4(3): 919-929, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559709

ABSTRACT

Solvation and ion valency effects on selectivity of metal oxyanions at redox-polymer interfaces are explored through in situ spatial-temporally resolved neutron reflectometry combined with large scale ab initio molecular dynamics. The selectivity of ReO4- vs MoO42- for two redox-metallopolymers, poly(vinyl ferrocene) (PVFc) and poly(3-ferrocenylpropyl methacrylamide) (PFPMAm) is evaluated. PVFc has a higher Re/Mo separation factor compared to PFPMAm at 0.6 V vs Ag/AgCl. In situ techniques show that both PVFc and PFPMAm swell in the presence of ReO4- (having higher solvation with PFPMAm), but do not swell in contact with MoO42-. Ab initio molecular simulations suggest that MoO42- maintains a well-defined double solvation shell compared to ReO4-. The more loosely solvated anion (ReO4-) is preferably adsorbed by the more hydrophobic redox polymer (PVFc), and electrostatic cross-linking driven by divalent anionic interactions could impair film swelling. Thus, the in-depth understanding of selectivity mechanisms can accelerate the design of ion-selective redox-mediated separation systems for transition metal recovery and recycling.

4.
J Am Chem Soc ; 145(48): 26016-26027, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37976467

ABSTRACT

Proton transfer is critically important to many electrocatalytic reactions, and directed proton delivery could open new avenues for the design of electrocatalysts. However, although this approach has been successful in molecular electrocatalysis, proton transfer has not received the same attention in heterogeneous electrocatalyst design. Here, we report that a metal oxide proton relay can be built within heterogeneous electrocatalyst architectures and improves the kinetics of electrochemical hydrogen evolution and oxidation reactions. The volcano-type relationship between activity enhancement and pKa of amine additives confirms this improvement; we observe maximum rate enhancement when the pKa of a proton relay matches the pH of the electrolyte solution. Density-functional-theory-based reactivity studies reveal a decreased proton transfer energy barrier with a metal oxide proton relay. These findings demonstrate the possibility of controlling the proton delivery and enhancing the reaction kinetics by tuning the chemical properties and structures at heterogeneous interfaces.

5.
ACS Appl Mater Interfaces ; 15(37): 44469-44481, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37676918

ABSTRACT

Controlling ion desolvation, transport, and charge transfer at the electrode-electrolyte interface (EEI) is critical to enable the rational design of the efficient and selective separation of targeted heavy metals and the decontamination of industrial wastewater. The main challenge is to sufficiently resolve and interrogate the desolvation of solvated metal ions and their subsequent electroreduction at the EEI and establish pathways to modulate these intermediate steps to achieve efficient energy transfer for targeted reactive separations. Herein, we obtained a predictive understanding of modulating the desolvation and electrosorption of Pb2+ cations using the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) in aqueous electrolyte. We revealed the formation of a compact interphase layer consisting of EMIMCl-Pb complexes under an applied electric field using operando electrochemical Raman spectroscopy, atomic force microscopy, and electrochemical impedance spectroscopy measurements combined with classical molecular dynamics simulations. A lower negative potential was shown to result in the formation of a well-oriented layer with the positive imidazolium ring of EMIMCl lying perpendicular to the electrode and the hydrophobic alkyl chain extending into the bulk electrolyte. This oriented layer, which formed from a dilute concentration of EMIMCl added to the electrolyte, was demonstrated to facilitate desolvation of incoming solvated Pb2+ cations and decrease the charge transfer resistance for Pb electrodeposition, which has important implications for the selective removal of Pb from contaminated mixtures. Overall, our findings open up new opportunities to modulate ion desolvation using hydrophobic ionic liquids in aqueous electrolytes for efficient heavy-metal separation.

6.
Chem Rev ; 123(18): 10838-10876, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37286529

ABSTRACT

Cement and concrete are vital materials used to construct durable habitats and infrastructure that withstand natural and human-caused disasters. Still, concrete cracking imposes enormous repair costs on societies, and excessive cement consumption for repairs contributes to climate change. Therefore, the need for more durable cementitious materials, such as those with self-healing capabilities, has become more urgent. In this review, we present the functioning mechanisms of five different strategies for implementing self-healing capability into cement based materials: (1) autogenous self-healing from ordinary portland cement and supplementary cementitious materials and geopolymers in which defects and cracks are repaired through intrinsic carbonation and crystallization; (2) autonomous self-healing by (a) biomineralization wherein bacteria within the cement produce carbonates, silicates, or phosphates to heal damage, (b) polymer-cement composites in which autonomous self-healing occurs both within the polymer and at the polymer-cement interface, and (c) fibers that inhibit crack propagation, thus allowing autogenous healing mechanisms to be more effective. In all cases, we discuss the self-healing agent and synthesize the state of knowledge on the self-healing mechanism(s). In this review article, the state of computational modeling across nano- to macroscales developed based on experimental data is presented for each self-healing approach. We conclude the review by noting that, although autogenous reactions help repair small cracks, the most fruitful opportunities lay within design strategies for additional components that can migrate into cracks and initiate chemistries that retard crack propagation and generate repair of the cement matrix.

7.
J Am Chem Soc ; 145(19): 10847-10860, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145876

ABSTRACT

Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.

8.
ACS Omega ; 7(15): 12453-12466, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35465123

ABSTRACT

Increasing atmospheric concentrations of greenhouse gases due to industrial activity have led to concerning levels of global warming. Reducing carbon dioxide (CO2) emissions, one of the main contributors to the greenhouse effect, is key to mitigating further warming and its negative effects on the planet. CO2 capture solvent systems are currently the only available technology deployable at scales commensurate with industrial processes. Nonetheless, designing these solvents for a given application is a daunting task requiring the optimization of both thermodynamic and transport properties. Here, we discuss the use of atomic scale modeling for computing reaction energetics and transport properties of these chemically complex solvents. Theoretical studies have shown that in many cases, one is dealing with a rich ensemble of chemical species in a coupled equilibrium that is often difficult to characterize and quantify by experiment alone. As a result, solvent design is a balancing act between multiple parameters which have optimal zones of effectiveness depending on the operating conditions of the application. Simulation of reaction mechanisms has shown that CO2 binding and proton transfer reactions create chemical equilibrium between multiple species and that the agglomeration of resulting ions and zwitterions can have profound effects on bulk solvent properties such as viscosity. This is balanced against the solvent systems needing to perform different functions (e.g., CO2 uptake and release) depending on the thermodynamic conditions (e.g., temperature and pressure swings). The latter constraint imposes a "Goldilocks" range of effective parameters, such as binding enthalpy and pK a, which need to be tuned at the molecular level. The resulting picture is that solvent development requires an integrated approach where theory and simulation can provide the necessary ingredients to balance competing factors.

9.
ACS Appl Mater Interfaces ; 14(16): 19031-19042, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420797

ABSTRACT

Functionalization of graphene oxide (GO) membranes is generally achieved using carboxyl groups as binding sites for ligands. Herein, by taking advantage of the ability of imidazolium-based ionic liquids (ILs) to undergo an epoxide ring-opening reaction, a new approach of GO modification was established, in which ILs were bonded to the abundant epoxides on GO without sacrificing the carboxyl groups. Computational methods confirmed this unique configuration of ILs on GO, which enabled the dispersion of IL/GO flakes in water for facile casting into laminate membranes. Compared with neat GO, the ILs in IL/GO membranes served as spacers that substantially reduced the multi-valent cation mobility, simultaneously facilitated ion desolvation, and increased the water flux across the membrane. Our studies found that the higher separation efficiency of IL/GO membranes may be attributed to the synergistic modification of the hydrophobicity and surface charge. Specifically, the protonated nitrogen of the imidazolium cations altered the surface charge of GO, thereby generating electrostatic repulsion that enhanced the selectivity of cation rejection. On the other hand, the increased length of the alkyl chains bound to the imidazolium rings was found to increase the hydrophobicity of GO, which, in turn, aided the fine-tuning of the water desolvation/transport dynamics at the GO/IL interface to achieve a high water flux. Additionally, the water retention was reduced on the hydrophobic planes, which inhibited GO swelling during aqueous separations. Molecular dynamics simulations revealed increased water diffusivity when ILs were intercalated within GO layers. We establish that without requiring a high energy input, functionalization of GO membranes with ILs may be a promising approach to achieve efficient ion separation and critical material recovery.

10.
J Chem Theory Comput ; 18(3): 1849-1861, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35099965

ABSTRACT

Adsorption of organics in the aqueous phase is an area which is experimentally difficult to measure, while computational techniques require extensive configurational sampling of the solvent and adsorbate. This is exceedingly computationally demanding, which excludes its routine use. If implicit solvent could be applied instead, this would dramatically reduce the computational cost as configurational sampling of solvent is not needed. Here, using statistical thermodynamic arguments and DFT calculations with implicit solvent models, we show that semiquantitative values for the free energy and entropy change of adsorption in the aqueous phase (ΔGadssolv and ΔSadssolv) for small organics can be calculated, for a range of coverages. We parametrize the soft sphere based solute dielectric cavity to an approximated free energy of solvation for a single Pt atom at the (111) facet, forming upper and lower bounds based on the entropy of water at the aqueous metal interface (ΔGsolv(Pt) = -4.35 to -7.18 kJ mol-1). This captures the decrease in ΔGadssolv compared to the free energy of adsorption in the vacuum phase (ΔGadsvac), while solvent models with electron density based cavities fail to do so. For a range of oxygenated aromatics, the adsorption energetics using horizontal gas phase geometries significantly overestimate ΔGadssolv compared to experiment by ∼100 kJ mol-1, but they agree with ab initio MD simulations using similar geometries. This suggests oxygenated aromatic compounds adsorb perpendicular to the metallic surface, while the ΔGadssolv for vertical geometries of furfural and cyclohexanol agree to within 20 kJ mol-1 of experimental studies. The proposed techniques provide an inexpensive toolset for validation and prediction of adsorption energetics on solvated metallic surfaces, which could be further validated by the future availability of more experimental measurements for the aqueous entropy/free energy of adsorption.

11.
ACS Appl Mater Interfaces ; 13(45): 53398-53408, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34494435

ABSTRACT

Actinide molten salts represent a class of important materials in nuclear energy. Understanding them at a molecular level is critical for the proper and optimal design of relevant technological applications. Yet, owing to the complexity of electronic structure due to the 5f orbitals, computational studies of heavy elements in condensed phases using ab initio potentials to study the structure and dynamics of these elements embedded in molten salts are difficult. This lack of efficient computational protocols makes it difficult to obtain information on properties that require extensive statistical sampling like transport properties. To tackle this problem, we adopted a machine-learning approach to study ThCl4-NaCl and UCl3-NaCl binary systems. The machine-learning potential with the density functional theory accuracy allows us to obtain long molecular dynamics trajectories (ns) for large systems (103 atoms) at a considerably low computing cost, thereby efficiently gaining information about their bonding structures, thermodynamics, and dynamics at a range of temperatures. We observed a considerable change in the coordination environments of actinide elements and their characteristic coordination sphere lifetime. Our study also suggests that actinides in molten salts may not follow well-known entropy-scaling laws.

12.
ChemSusChem ; 14(23): 5283-5292, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34555259

ABSTRACT

A combined experimental and theoretical study has been carried out on the wetting and reactivity of water-lean carbon capture solvents on the surface of common column packing materials. Paradoxically, these solvents are found to be equally able to wet hydrophobic and hydrophilic surfaces. The solvents are amphiphilic and can adapt to any interfacial environment, owing to their inherent heterogeneous (nonionic/ionic) molecular structure. Ab initio molecular dynamics indicates that these structures enable the formation of a strong adlayer on the surface of hydrophilic surfaces like oxidized steel which promotes solvent decomposition akin to hydrolysis from surface oxides and hydroxides. This decomposition passivates the surface, making it effectively hydrophobic, and the decomposed solvent promotes leaching of the iron into the bulk fluid. This study links the wetting behavior to the observed corrosion of the steels by decomposition of solvent at steel interfaces. The overall affect is strongly dependent on the chemical composition of the solvent in that amines are stable, whereas imines and alcohols are not. Moreover, plastic packing shows little to no solvent degradation, but an equal degree of wetting.

13.
JACS Au ; 1(6): 766-776, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34467331

ABSTRACT

A key problem associated with the design of graphene oxide (GO) materials and their tuning for nanoscale separations is how specific functional groups influence the competitive adsorption of solvated ions and water at liquid/graphene interfaces. Computation accompanied by experiment shows that OH and COOH exert an influence on water adsorption properties stronger than that of O and H functional groups. The COO- anions, following COOH deprotonation, stabilize Pb(II) through strong electrostatic interactions. This suggests that, among the functional groups under study, COOH offers the best Pb(II) adsorption capacity and the ability to regenerate the sorbent through a pH swing. In line with computation, striking experimental observations revealed that a substantial increase in Pb(II) adsorption occurs with increasing pH. Our findings provide a systematic framework for controlled design and implementation of regenerable C-based sorbents used in separations and desalination.

14.
J Chem Phys ; 155(4): 044702, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34340378

ABSTRACT

The catalytic reduction in carbon dioxide is a crucial step in many chemical industrial reactions, such as methanol synthesis, the reverse water-gas shift reaction, and formic acid synthesis. Here, we investigate the role of bulk hydrogen, where hydrogen atoms are found deep inside a metal surface as opposed to subsurface ones, upon CO2 reduction over a Ni(110) surface using density functional theory and ab initio molecular dynamics simulations. While it has previously been shown that subsurface hydrogen stabilizes CO2 and can aid in overcoming reaction barriers, the role of bulk hydrogen is less studied and thus unknown with regard to CO2 reduction. We find that the presence of bulk hydrogen can significantly alter the electronic structure of the Ni(110) surface, particularly the work function and d-band center, such that CO2 adsorbs more strongly to the surface and is more easily reduced. Our results show an enhanced CO2 dissociation in the presence of bulk hydrogen, shedding light on a hitherto underappreciated mechanistic pathway for CO2 reduction on metal surfaces.

15.
J Chem Theory Comput ; 17(6): 3360-3371, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34032441

ABSTRACT

We have developed a new set of norm-conserving pseudopotentials and companion Gaussian basis sets for the actinide (An) series (Ac-Lr) using the Goedecker, Teter, and Hutter (GTH) formalism with the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional of generalized gradient approximation. To test the accuracy and reliability of the newly parameterized An-GTH pseudopotentials and basis sets, a variety of benchmarks on actinide-containing molecules were carried out and compared to all-electron and available experimental results. The new pseudopotentials include both medium- ([Xe]4f14) and large-core ([Xe]4f145d10) options that successfully reproduce the structures and energetics, particularly redox processes. The medium-core size set, in particular, reproduces all-electron calculations over multiple oxidation states from 0 to VII, whereas the large-core set is suitable only for the early series elements and low oxidation states. The underlying reason for these transferability issues is discussed in detail. This work fills a critical void in the literature for studying the chemistry of 5f-block elements in the condensed phase.

16.
Dalton Trans ; 50(15): 5342-5350, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33881070

ABSTRACT

Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.

17.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33819019

ABSTRACT

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

18.
Inorg Chem ; 60(5): 3117-3130, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33544594

ABSTRACT

To resolve the fleeting structures of lanthanide Ln3+ aqua ions in solution, we (i) performed the first ab initio molecular dynamics (AIMD) simulations of the entire series of Ln3+ aqua ions in explicit water solvent using pseudopotentials and basis sets recently optimized for lanthanides and (ii) measured the symmetry of the hydrating waters about Ln3+ ions (Nd3+, Dy3+, Er3+, Lu3+) for the first time with extended X-ray absorption fine structure (EXAFS). EXAFS spectra were measured experimentally and generated from AIMD trajectories to directly compare simulation, which concurrently considers the electronic structure and the atomic dynamics in solution, with experiment. We performed a comprehensive evaluation of EXAFS multiple-scattering analysis (up to 6.5 Å) to measure Ln-O distances and angular correlations (i.e., symmetry) and elucidate the molecular geometry of the first hydration shell. This evaluation, in combination with symmetry-dependent L3- and L1-edge spectral analysis, shows that the AIMD simulations remarkably reproduces the experimental EXAFS data. The error in the predicted Ln-O distances is less than 0.07 Å for the later lanthanides, while we observed excellent agreement with predicted distances within experimental uncertainty for the early lanthanides. Our analysis revealed a dynamic, symmetrically disordered first coordination shell, which does not conform to a single molecular geometry for most lanthanides. This work sheds critical light on the highly elusive coordination geometry of the Ln3+ aqua ions.

19.
RSC Adv ; 11(62): 38944-38948, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492469

ABSTRACT

We have given, for the first time, physicochemical insight into the electronic structure routes from half-metallic to magnetic semiconducting triazine g-C4N3. To this end, three material designs have been proposed using density functional calculations. In one design, this half-metal is first made semiconducting via hydrogenation, then tailored with B and N atomic species, which gives a new prototype of the antiferromagnetic semiconductor monolayer HC4N3BN. In the others, it can be rendered spin gapless semiconducting with H and B or C, followed by F or O tailoring, which eventually leads to the two new bipolar ferromagnetic semiconductors HC4N3BF and HC4N3CO. These monolayers are considered to be novel materials in spintronics.

20.
Angew Chem Int Ed Engl ; 60(1): 290-296, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32770641

ABSTRACT

The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...