Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Behav Brain Res ; 378: 112315, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31654662

ABSTRACT

Schizophrenia is a major psychiatric disorder associated with positive and negative symptoms and cognitive impairments. In this study, we used animal models of behavior to evaluate the antipsychotic activity of ASP2905, a potent and selective inhibitor of the potassium channel Kv12.2 encoded by the Kcnh3/BEC1 gene. ASP2905 inhibited hyperlocomotion induced by methamphetamine and by phencyclidine. In contrast, ASP2905 did not affect spontaneous locomotion, suggesting that ASP2905 selectively inhibits abnormal behaviors induced by stimulants. Chronic infusion of ASP2905 significantly ameliorated phencyclidine-induced prolongation of immobility time in mice subjected to the forced swimming test. These findings suggest that ASP2905 potentially mitigates symptoms of schizophrenia, such as apathy. The antipsychotic clozapine also reversed phencyclidine-induced prolonged immobility, while risperidone and haloperidol had no effect. Assessment of the effects of ASP2905 on latent learning deficits in mice treated with phencyclidine as neonates subjected to the water-finding task showed that ASP2905 significantly ameliorated phencyclidine-induced prolongation of finding latency, which reflects latent learning performance. These findings suggest that ASP2905 potentially mitigates cognitive impairments caused by schizophrenia, such as attention deficits. In contrast, administration of clozapine did not ameliorate phencyclidine-induced prolongation of finding latency. Therefore, ASP2905 may alleviate the broad spectrum of symptoms of schizophrenia, including positive and negative symptoms and cognitive impairments, which is in contrast to currently available antipsychotics, which are generally only partially effective for ameliorating these symptoms.


Subject(s)
Antipsychotic Agents/pharmacology , Cognitive Dysfunction/drug therapy , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Hyperkinesis/drug therapy , Learning/drug effects , Locomotion/drug effects , Potassium Channel Blockers/pharmacology , Pyrimidines/pharmacology , Schizophrenia/drug therapy , Triazines/pharmacology , Animals , Antipsychotic Agents/administration & dosage , Behavior, Animal/drug effects , Cognitive Dysfunction/etiology , Disease Models, Animal , Hyperkinesis/chemically induced , Male , Memory, Short-Term , Mice , Potassium Channel Blockers/administration & dosage , Pyrimidines/administration & dosage , Schizophrenia/chemically induced , Schizophrenia/complications , Triazines/administration & dosage
2.
PLoS One ; 13(11): e0207750, 2018.
Article in English | MEDLINE | ID: mdl-30462746

ABSTRACT

N-(4-fluorophenyl)-N'-phenyl-N"-(pyrimidin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine [ASP2905] is a potent and selective inhibitor of the potassium voltage-gated channel subfamily H member 3 (KCNH3) that was originally identified in our laboratory. KCNH3 is concentrated in the forebrain, and its overexpression in mice leads to cognitive deficits. In contrast, Kcnh3 knockout mice exhibit enhanced performance in cognitive tasks such as attention. These data suggest that KCNH3 plays important roles in cognition. Here we investigated the neurochemical and neurophysiological profiles of ASP2905 as well as its effects on cognitive function, focusing on attention. ASP2905 (0.0313 and 0.0625 mg/kg, po) improved the latent learning ability of mice, which reflects attention. Microdialysis assays in rats revealed that ASP2905 increased the efflux of dopamine and acetylcholine in the medial prefrontal cortex (0.03, 0.1 mg/kg, po; 0.1, 1 mg/kg, po, respectively). The activities of these neurotransmitters are closely associated with attention. We used a multiple-trial passive avoidance task to investigate the effects of ASP2905 on inattention and impulsivity in juvenile stroke-prone spontaneously hypertensive rats. ASP2905 (0.1 and 0.3 mg/kg, po) significantly prolonged cumulative latency as effectively as methylphenidate (0.1 and 0.3 mg/kg, sc), which is the gold standard for treating ADHD. Further, ASP2905, amphetamine, and methylphenidate significantly increased the alpha-band power of rats, suggesting that ASP2905 increases arousal, which is a pharmacologically important activity for treating ADHD. In contrast, atomoxetine and guanfacine did not significantly affect power. Together, these findings suggest that ASP2905, which acts through a novel mechanism, is as effective for treating ADHD as currently available drugs such as methylphenidate.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Pyrimidines/pharmacology , Triazines/pharmacology , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/pathology , Attention Deficit Disorder with Hyperactivity/physiopathology , Avoidance Learning/drug effects , Dopamine/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Extracellular Space/drug effects , Extracellular Space/metabolism , Male , Mice , Potassium Channel Blockers/therapeutic use , Pyrimidines/therapeutic use , Rats , Triazines/therapeutic use
3.
Eur J Pharmacol ; 810: 26-35, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28552344

ABSTRACT

KCNH3 (BEC1) is a member of the ether-à-go-go (KCNH) family of voltage-gated K+ channels. The aim of this study was to determine the pharmacological profiles in vitro and in vivo of a KCNH3 inhibitor N-(4-fluorophenyl)-N'-phenyl-N''-(pyrimidin-2-ylmethyl)-1,3,5-triazine-2,4,6-triamine (ASP2905). We analyzed the effects of ASP2905 on channel activity in vitro and its neuropharmacological properties in young and aged rats as well as in mice. ASP2905 potently inhibited potassium currents in CHO cells expressing KCNH3 (IC50 = 9.0nM). In contrast, ASP2905 (≤ 10µM) minimally bound with low affinities to 55 transmembrane proteins. ASP2905 (0.1µM, 1µM) decreased the frequency of spontaneous inhibitory postsynaptic currents in cultured rat hippocampal neurons. In mice, ASP2905 reversed the disruption of spontaneous alternation behavior induced by MK-801 and scopolamine (minimum effective dose of ASP2905: 0.0625mg/kg, po). ASP2905 ameliorated the cognitive deficits of aged rats in step-through passive avoidance (0.0313 and 0.0625mg/kg, po) and Morris water-maze tasks (0.01mg/kg, po) and effectively penetrated the brain. The mean plasma and brain concentrations of ASP2905 reached their maxima (Cmax = 0.399ng/ml and 1.77ng/g, respectively) 1h after a single oral administration and then decreased (t1/2 = 1.5-1.6h) (brain plasma ratio = 2.7-4.9). The present study suggests that ASP2905 is a selective, orally administered inhibitor of KCNH3, which can enhance cognitive performance.


Subject(s)
Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Pyrimidines/pharmacology , Triazines/pharmacology , Animals , Behavior, Animal/drug effects , CHO Cells , Cognition/drug effects , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Postsynaptic Potentials/drug effects , Male , Maze Learning/drug effects , Mice , Neurochemistry , Rats
4.
Eur Neuropsychopharmacol ; 24(10): 1698-708, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108314

ABSTRACT

We recently identified ASP5736, (N-(diaminomethylene)-1-(3,5-difluoropyridin-4-yl)-4-fluoroisoquinoline-7-carboxamide (2E)-but-2-enedioate), a novel antagonist of 5-HT5A receptor, and here describe the in vitro and in vivo characterization of this compound. ASP5736 exhibited a high affinity for the human 5-HT5A receptor (Ki = 3.6 ± 0.66 nM) and antagonized 5-carboxamidotryptamine (5-CT)-induced Ca(2+) influx in human cells stably expressing the 5-HT5A receptor with approximately 200-fold selectivity over other receptors, including other 5-HT receptor subtypes, enzymes, and channels except human 5-HT2c receptor (Ki = 286.8 nM) and 5-HT7 receptor (Ki = 122.9 nM). Further, ASP5736 dose-dependently antagonized the 5-CT-induced decrease in cAMP levels in HEK293 cells stably expressing the 5-HT5A receptor. We then evaluated the effects of ASP5736 on cognitive impairments in several animal models of schizophrenia. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both ameliorated by ASP5736. In addition, ASP5736 also attenuated MK-801- and methamphetamine (MAP)-induced hyperactivity in mice without causing sedation, catalepsy, or plasma prolactin increase. The addition of olanzapine did not affect ASP5736-induced cognitive enhancement, and neither the sedative nor cataleptogenic effects of olanzapine were worsened by ASP5736. These results collectively suggest that ASP5736 is a novel and potent 5-HT5A receptor antagonist that not only ameliorates positive-like symptoms but also cognitive impairments in animal models of schizophrenia, without adverse effects. Present studies also indicate that ASP5736 holds potential to satisfy currently unmet medical needs for the treatment of schizophrenia by either mono-therapy or co-administered with commercially available antipsychotics.


Subject(s)
Antipsychotic Agents/pharmacology , Guanidines/pharmacology , Isoquinolines/pharmacology , Schizophrenia/drug therapy , Serotonin Antagonists/pharmacology , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacokinetics , Calcium/metabolism , Catalepsy/drug therapy , Catalepsy/physiopathology , Cognition Disorders/drug therapy , Cognition Disorders/physiopathology , Cyclic AMP/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Guanidines/chemistry , Guanidines/pharmacokinetics , HEK293 Cells , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Male , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Motor Activity/physiology , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Schizophrenia/physiopathology , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacokinetics
5.
Neuropharmacology ; 79: 412-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24373902

ABSTRACT

γ-Secretase is the enzyme responsible for the intramembranous proteolysis of various substrates, such as amyloid precursor protein (APP) and Notch. Amyloid-ß peptide 42 (Aß42) is produced through the sequential proteolytic cleavage of APP by ß- and γ-secretase and causes the synaptic dysfunction associated with memory impairment in Alzheimer's disease. Here, we identified a novel cyclohexylamine-derived γ-secretase modulator, {(1R*,2S*,3R*)-3-[(cyclohexylmethyl)(3,3-dimethylbutyl)amino]-2-[4-(trifluoromethyl)phenyl]cyclohexyl}acetic acid (AS2715348), that may inhibit this pathological response. AS2715348 was seen to reduce both cell-free and cellular production of Aß42 without increasing levels of APP ß-carboxyl terminal fragment or inhibiting Notch signaling. Additionally, the compound increased Aß38 production, suggesting a shift of the cleavage site in APP. The inhibitory potency of AS2715348 on endogenous Aß42 production was similar across human, mouse, and rat cells. Oral administration with AS2715348 at 1 mg/kg and greater significantly reduced brain Aß42 levels in rats, and no Notch-related toxicity was observed after 28-day treatment at 100 mg/kg. Further, AS2715348 significantly ameliorated cognitive deficits in APP-transgenic Tg2576 mice. Finally, AS2715348 significantly reduced brain Aß42 levels in cynomolgus monkeys. These findings collectively show the promise for AS2715348 as a potential disease-modifying drug for Alzheimer's disease.


Subject(s)
Acetates/pharmacology , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Brain/drug effects , Cyclohexylamines/pharmacology , Neuroprotective Agents/pharmacology , Acetates/adverse effects , Acetates/pharmacokinetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cell Line, Tumor , Cognition/drug effects , Cyclohexylamines/adverse effects , Cyclohexylamines/pharmacokinetics , Disease Models, Animal , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Transgenic , Molecular Structure , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacokinetics , Nootropic Agents/adverse effects , Nootropic Agents/chemistry , Nootropic Agents/pharmacology , Peptide Fragments/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism
6.
J Neurochem ; 125(3): 465-72, 2013 May.
Article in English | MEDLINE | ID: mdl-23240999

ABSTRACT

Given that amyloid-ß 42 (Aß42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aß42 production should be a potential therapeutic approach. γ-Secretase modulators (GSMs) cause selective reduction of Aß42 or both reduction of Aß42 and Aß40 without affecting total Aß through shifting the γ-cleavage position in amyloid precursor protein. We recently reported on GSM-2, one of the second-generation GSMs, that selectively reduced brain Aß42 level and significantly ameliorated cognitive deficits in plaque-free 5.5-month-old Tg2576 AD model mice. Here, we investigated the effects of GSM-2 on 10-, 14-, and 18-month-old mice which had age-dependent increase in amyloid plaques. Eight-day treatment with GSM-2 significantly ameliorated cognitive deficits measured by Y-maze task in the mice of any age. However, GSM-2 reduced brain soluble Aß42 only in 10-month-old mice. In contrast, GSM-2 markedly reduced newly synthesized soluble Aß42 in both 10- and 18-month-old mice with similar efficacy when measured using the stable isotope-labeling technique, suggesting that nascent Aß42 plays a more significant role than plaque-associated soluble Aß42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aß42 synthesis in AD therapeutic regimens.


Subject(s)
Alzheimer Disease/complications , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Cognition Disorders/metabolism , Enzyme Inhibitors/therapeutic use , Peptide Fragments/metabolism , Acetates/pharmacology , Acetates/therapeutic use , Age Factors , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/immunology , Amyloid beta-Protein Precursor/genetics , Animals , Antibodies/therapeutic use , Chromatography, Liquid , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme-Linked Immunosorbent Assay , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mass Spectrometry , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Peptide Fragments/immunology , Piperidines/pharmacology , Piperidines/therapeutic use
7.
Eur J Pharmacol ; 685(1-3): 59-69, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22542656

ABSTRACT

Hypofunction of brain N-methyl-d-aspartate (NMDA) receptors has been implicated in psychiatric disorders such as schizophrenia and Alzheimer's disease. Inhibition of glycine transporter-1 (GlyT1) is expected to increase glycine, a co-agonist of the NMDA receptor and, consequently, to facilitate NMDA receptor function. We have identified ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole) as a novel GlyT1 inhibitor, and here describe our in vitro and in vivo characterization of this compound. ASP2535 potently inhibited rat GlyT1 (IC(50)=92 nM) with 50-fold selectivity over rat glycine transporter-2 (GlyT2). It showed minimal affinity for many other receptors except for µ-opioid receptors (IC(50)=1.83 µM). Oral administration of ASP2535 dose-dependently inhibited ex vivo [(3)H]-glycine uptake in mouse cortical homogenate, suggesting good brain permeability. This profile was confirmed by pharmacokinetic analysis. We then evaluated the effect of ASP2535 on animal models of cognitive impairment in schizophrenia and Alzheimer's disease. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both attenuated by ASP2535 (0.3-3mg/kg, p.o. and 0.3-1mg/kg, p.o., respectively). ASP2535 (1-3mg/kg, p.o.) also improved the PCP-induced deficit in prepulse inhibition in rats. Moreover, the working memory deficit in scopolamine-treated mice and the spatial learning deficit in aged rats were both attenuated by ASP2535 (0.1-3mg/kg, p.o. and 0.1mg/kg, p.o., respectively). These studies provide compelling evidence that ASP2535 is a novel and centrally-active GlyT1 inhibitor that can improve cognitive impairment in animal models of schizophrenia and Alzheimer's disease, suggesting that ASP2535 may satisfy currently unmet medical needs for the treatment of these diseases.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Oxadiazoles/pharmacology , Schizophrenia/drug therapy , Triazoles/pharmacology , Administration, Oral , Alzheimer Disease/physiopathology , Animals , Brain/metabolism , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Disease Models, Animal , Dizocilpine Maleate/toxicity , Dose-Response Relationship, Drug , Female , Humans , Inhibitory Concentration 50 , Male , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Mice , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Permeability , Rats , Rats, Wistar , Schizophrenia/physiopathology , Triazoles/administration & dosage , Triazoles/pharmacokinetics
8.
J Neurosci ; 32(6): 2037-50, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22323718

ABSTRACT

γ-Secretase inhibitors (GSIs) reduce amyloid-ß (Aß) peptides but inevitably increase the ß-C-terminal fragment (ß-CTF) of amyloid precursor protein (APP), potentially having undesirable effects on synapses. In contrast, γ-secretase modulators (GSMs) reduce Aß42 without increasing ß-CTF. Although the Aß-lowering effects of these compounds have been extensively studied, little effort has been made to investigate their effects on cognition. Here, we compared the effects of two GSIs--(2S)-2-hydroxy-3-methyl-N-[(2S)-1-{[(1S)-3-methyl-2-oxo-2,3,4,5-tetrahydro-1H-3-benzazepin-1-yl]amino}-1-oxopropan-2-yl]butanamide (LY450139, semagacestat) and (2R)-2-[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxazol-3-yl)phenyl]methyl]amino-5,5,5-trifluoropentanamide (BMS-708163)--and a second-generation GSM [{(2S,4R)-1-[(4R)-1,1,1-trifluoro-7-methyloctan-4-yl]-2-[4-(trifluoromethyl)phenyl]piperidin-4-yl}acetic acid (GSM-2)] on spatial working memory in APP-transgenic (Tg2576) and nontransgenic mice using the Y-maze task. While acute dosing with either GSI ameliorated memory deficits in 5.5-month-old Tg2576 mice, these effects disappeared after 8 d subchronic dosing. Subchronic dosing with either GSI rather impaired normal cognition in 3-month-old Tg2576 mice, with no inhibition on the processing of other γ-secretase substrates, such as Notch, N-cadherin, or EphA4, in the brain. LY450139 also impaired normal cognition in wild-type mice; however, the potency was 10-fold lower than that in Tg2576 mice, indicating an APP-dependent mechanism likely with ß-CTF accumulation. Immunofluorescence studies revealed that the ß-CTF accumulation was localized in the presynaptic terminals of the hippocampal stratum lucidum and dentate hilus, implying an effect on presynaptic function in the mossy fibers. In contrast, both acute and subchronic dosing with GSM-2 significantly ameliorated memory deficits in Tg2576 mice and did not affect normal cognition in wild-type mice. We demonstrated a clear difference between GSI and GSM in effects on functional consequences, providing new insights into strategies for developing these drugs against Alzheimer's disease.


Subject(s)
Alanine/analogs & derivatives , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Protein Precursor/physiology , Azepines/pharmacology , Cognition/drug effects , Cognition/physiology , Protease Inhibitors/pharmacology , Alanine/pharmacology , Amyloid beta-Protein Precursor/genetics , Animals , Cell Line, Tumor , Female , Humans , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Transgenic
9.
Life Sci ; 88(17-18): 761-5, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21356217

ABSTRACT

AIMS: Clinical use of olanzapine has been suggested to be associated with weight gain and adiposity in schizophrenic patients. While studies in experimental animals have noted weight gain in olanzapine-treated female rats, these findings have yet to be replicated in males. This study investigated the effect of chronic subcutaneous infusion of olanzapine in male rats via a recently developed electrical microinfusion pump. MAIN METHODS: An electrical microinfusion pump was subcutaneously implanted in male Sprague-Dawley rats who were then chronically administered olanzapine. Plasma olanzapine concentration and body weight were monitored, and fat pads were weighed after six weeks' olanzapine treatment. KEY FINDINGS: Plasma olanzapine concentration plateaued within 4h of commencement of chronic olanzapine 1.5mg/animal/day infusion and remained constant until day 21. Six-week infusion of olanzapine at 1.5 but not 1mg/animal/day induced significant adiposity in subcutaneous, epididymal, and retroperitoneal fat. Body weight and food intake values did not differ between olanzapine- and vehicle-treated rats throughout the experiment. SIGNIFICANCE: The present study demonstrated that chronic infusion of olanzapine induced adiposity in male rats without inducing weight gain or hyperphagia, even with sufficient plasma concentration. This report is the first to provide information about adiposity-inducible plasma concentration of olanzapine in male rats.


Subject(s)
Adipose Tissue/drug effects , Antipsychotic Agents/pharmacology , Benzodiazepines/pharmacology , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Benzodiazepines/administration & dosage , Benzodiazepines/pharmacokinetics , Body Weight/drug effects , Eating/drug effects , Infusion Pumps, Implantable , Infusions, Subcutaneous , Male , Olanzapine , Rats , Rats, Sprague-Dawley
10.
Behav Brain Res ; 216(2): 561-8, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-20816897

ABSTRACT

Body weight gain is one of the most serious side effects associated with clinical use of antipsychotics. However, the mechanisms by which antipsychotics induce body weight gain are unknown, and no reliable animal models of antipsychotics-induced weight gain have been established. The present studies were designed to establish male rat models of weight gain induced by chronic and acute treatment with antipsychotics. Six-week chronic treatment with olanzapine (5, 7.5, and 10mg/kg/day) in male Sprague-Dawley rats fed a daily diet resembling a human macronutrient diet, significantly increased body weight gain and weight of fatty tissues. In contrast, ziprasidone (1.25, 2.5, and 5mg/kg/day) administration caused no observable adverse effects. We then investigated feeding behavior with acute antipsychotic treatment in male rats using an automated food measurement apparatus. Rats were allowed restricted access to normal laboratory chow (4h/day). With acute olanzapine (0.5, 1, and 2mg/kg, i.p.) treatment in the light phase, food intake volume and duration were significantly increased, while treatment with ziprasidone (0.3, 1, and 3mg/kg, i.p.) did not increase food intake volume or meal time duration. Findings from the present studies showed that chronic treatment with olanzapine in male rats induced body weight gain, and acute injection induced hyperphagia, suggesting that hyperphagia may be involved in the weight gain and obesity-inducing properties of chronically administered olanzapine. These animal models may provide useful experimental platforms for analysis of the mechanism of hyperphagia and evaluating the potential risk of novel antipsychotics to induce weight gain in humans.


Subject(s)
Antipsychotic Agents/adverse effects , Benzodiazepines/adverse effects , Disease Models, Animal , Hyperphagia/chemically induced , Piperazines/adverse effects , Thiazoles/adverse effects , Weight Gain/drug effects , Animals , Antipsychotic Agents/administration & dosage , Benzodiazepines/administration & dosage , Dose-Response Relationship, Drug , Feeding Behavior/drug effects , Male , Olanzapine , Piperazines/administration & dosage , Rats , Rats, Sprague-Dawley , Thiazoles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL