Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Leukemia ; 38(6): 1342-1352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491305

ABSTRACT

Thrombopoietin (Tpo), which binds to its specific receptor, the Mpl protein, is the major cytokine regulator of megakaryopoiesis and circulating platelet number. Tpo binding to Mpl triggers activation of Janus kinase 2 (Jak2) and phosphorylation of the receptor, as well as activation of several intracellular signalling cascades that mediate cellular responses. Three tyrosine (Y) residues in the C-terminal region of the Mpl intracellular domain have been implicated as sites of phosphorylation required for regulation of major Tpo-stimulated signalling pathways: Mpl-Y565, Mpl-Y599 and Mpl-Y604. Here, we have introduced mutations in the mouse germline and report a consistent physiological requirement for Mpl-Y599, mutation of which resulted in thrombocytopenia, deficient megakaryopoiesis, low hematopoietic stem cell (HSC) number and function, and attenuated responses to myelosuppression. We further show that in models of myeloproliferative neoplasms (MPN), where Mpl is required for pathogenesis, thrombocytosis was dependent on intact Mpl-Y599. In contrast, Mpl-Y565 was required for negative regulation of Tpo responses; mutation of this residue resulted in excess megakaryopoiesis at steady-state and in response to myelosuppression, and exacerbated thrombocytosis associated with MPN.


Subject(s)
Hematopoiesis , Myeloproliferative Disorders , Receptors, Thrombopoietin , Thrombopoietin , Tyrosine , Animals , Receptors, Thrombopoietin/metabolism , Receptors, Thrombopoietin/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Mice , Thrombopoietin/metabolism , Tyrosine/metabolism , Tyrosine/genetics , Phosphorylation , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Signal Transduction , Mutation , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Thrombopoiesis/genetics
2.
Nat Commun ; 15(1): 1135, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326297

ABSTRACT

Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.


Subject(s)
Receptors, Thrombopoietin , Thrombopoietin , Animals , Mice , Cryoelectron Microscopy , Receptors, Cytokine/metabolism , Receptors, Thrombopoietin/metabolism , Signal Transduction
3.
Commun Biol ; 6(1): 641, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316570

ABSTRACT

Protein Tyrosine Phosphatase 1B (PTP1B) is the prototypical protein tyrosine phosphatase and plays an essential role in the regulation of several kinase-driven signalling pathways. PTP1B displays a preference for bisphosphorylated substrates. Here we identify PTP1B as an inhibitor of IL-6 and show that, in vitro, it can dephosphorylate all four members of the JAK family. In order to gain a detailed understanding of the molecular mechanism of JAK dephosphorylation, we undertook a structural and biochemical analysis of the dephosphorylation reaction. We identified a product-trapping PTP1B mutant that allowed visualisation of the tyrosine and phosphate products of the reaction and a substrate-trapping mutant with a vastly decreased off-rate compared to those previously described. The latter mutant was used to determine the structure of bisphosphorylated JAK peptides bound to the enzyme active site. These structures revealed that the downstream phosphotyrosine preferentially engaged the active site, in contrast to the analogous region of IRK. Biochemical analysis confirmed this preference. In this binding mode, the previously identified second aryl binding site remains unoccupied and the non-substrate phosphotyrosine engages Arg47. Mutation of this arginine disrupts the preference for the downstream phosphotyrosine. This study reveals a previously unappreciated plasticity in how PTP1B interacts with different substrates.


Subject(s)
Janus Kinases , Phosphoric Monoester Hydrolases , Phosphotyrosine , Arginine , Binding Sites
4.
Cytokine ; 165: 156167, 2023 05.
Article in English | MEDLINE | ID: mdl-36934508

ABSTRACT

Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.


Subject(s)
Cytokines , Suppressor of Cytokine Signaling 1 Protein , src Homology Domains , Animals , Humans , Mice , Cytokines/metabolism , Phosphorylation , Signal Transduction/physiology , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , TYK2 Kinase/metabolism
5.
Proteomics ; 21(11-12): e2000244, 2021 06.
Article in English | MEDLINE | ID: mdl-33945654

ABSTRACT

MARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins. A large range of cell surface proteins regulated by more than one MARCH protein in addition to several MARCH protein-specific cell surface targets were identified most of which were downregulated by MARCH expression. Prominent among these were several integrin complexes associated with immune cell homing, adhesion and migration. Integrin α4ß1 (VLA4 or VCAM-1 receptor) was downregulated only by MARCH2 and we showed that in MARCH2 knockout mice, Integrin α4 was upregulated specifically in mature B-lymphocytes and this was accompanied by decreased numbers of B-cells in the spleen.


Subject(s)
Integrins , Membrane Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Mice , Mice, Knockout , Proteomics
6.
Elife ; 92020 12 02.
Article in English | MEDLINE | ID: mdl-33264090

ABSTRACT

The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.


Subject(s)
Antigens/immunology , Dendritic Cells/physiology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , CHO Cells , Cricetinae , Cricetulus , Gene Expression Regulation/physiology , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, Immunologic/genetics , Ubiquitin-Protein Ligases/genetics
7.
Cancers (Basel) ; 11(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683831

ABSTRACT

Janus kinases (JAKs) are found constitutively associated with cytokine receptors and are present in an inactive state prior to cytokine exposure. Activating mutations of JAKs are causative for a number of leukemias, lymphomas, and myeloproliferative diseases. In particular, the JAK2V617F mutant is found in most human cases of polycythemia vera, a disease characterized by over-production of erythrocytes. The V617F mutation is found in the pseudokinase domain of JAK2 and it leads to cytokine-independent activation of the kinase, as does the orthologous mutation in other JAK-family members. The mechanism whereby this mutation hyperactivates these kinases is not well understood, primarily due to the fact that the full-length JAK proteins are difficult to produce for structural and kinetic studies. Here we have overcome this limitation to perform a series of enzymatic analyses on full-length JAK1 and its constitutively active mutant form (JAK1V658F). Consistent with previous studies, we show that the presence of the pseudokinase domain leads to a dramatic decrease in enzymatic activity with no further decrease from the presence of the FERM or SH2 domains. However, we find that the mutant kinase, in vitro, is indistinguishable from the wild-type enzyme in every measurable parameter tested: KM (ATP), KM (substrate), kcat, receptor binding, thermal stability, activation rate, dephosphorylation rate, and inhibitor affinity. These results show that the V658F mutation does not enhance the intrinsic enzymatic activity of JAK. Rather this data is more consistent with a model in which there are cellular processes and interactions that prevent JAK from being activated in the absence of cytokine and it is these constraints that are affected by disease-causing mutations.

8.
Biochem J ; 476(19): 2869-2882, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31488575

ABSTRACT

Interleukin 6 (IL6) is a cytokine that regulates a number of important immune and inflammatory pathways. We used the ability of IL6 to inhibit the clonal proliferation of the mouse M1 myeloid leukemia cell line in agar to positively screen a cDNA expression library for proteins that inhibited IL6 activity. We found three clones completely resistant to IL6 that contained the cDNA for the Membrane-Associated RING-CH E3 ubiquitin ligase MARCH2. MARCH2 is a member of a family of membrane-bound E3 ubiquitin ligases that target cell surface receptors for degradation. MARCH2 overexpressing M1 clones retained responsiveness to the related cytokines leukemia inhibitory factor and oncostatin M and we showed that its inhibitory effect was a result of selective down-regulation of the IL6 receptor alpha chain and not the shared receptor subunit, gp130 or other signalling molecules. This activity of MARCH2 was also shared with related proteins MARCH4, MARCH9 and an isoform of MARCH3. The transmembrane domains and C-terminal domains, as well as a functional RING domain, of MARCH proteins were all required for substrate recognition and down-regulation. Genetic deletion of individual MARCH proteins in mice had no or little effect on IL6Rα levels but combined deletions of MARCH2,3 and 4 displayed elevated steady-state levels of IL6Rα in selected haemopoietic cell subsets including CD8+ and CD4+ T cells. These studies extend the potential immunosuppressive roles of MARCH proteins to include down-regulation of IL6 inflammatory responses.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/physiology , Receptors, Interleukin-6/metabolism , Ubiquitin-Protein Ligases/physiology , Animals , Cell Line, Tumor , Down-Regulation , Mice , Mice, Inbred C57BL , Protein Binding , Protein Domains , Protein Transport
9.
Immunol Cell Biol ; 97(9): 840-852, 2019 10.
Article in English | MEDLINE | ID: mdl-31335993

ABSTRACT

The innate immune system is our first line of defense against viral pathogens. Host cell pattern recognition receptors sense viral components and initiate immune signaling cascades that result in the production of an array of cytokines to combat infection. Retinoic acid-inducible gene-I (RIG-I) is a pattern recognition receptor that recognizes viral RNA and, when activated, results in the production of type I and III interferons (IFNs) and the upregulation of IFN-stimulated genes. Ubiquitination of RIG-I by the E3 ligases tripartite motif-containing 25 (TRIM25) and Riplet is thought to be requisite for RIG-I activation; however, recent studies have questioned the relative importance of these two enzymes for RIG-I signaling. In this study, we show that deletion of Trim25 does not affect the IFN response to either influenza A virus (IAV), influenza B virus, Sendai virus or several RIG-I agonists. This is in contrast to deletion of either Rig-i or Riplet, which completely abrogated RIG-I-dependent IFN responses. This was consistent in both mouse and human cell lines, as well as in normal human bronchial cells. With most of the current TRIM25 literature based on exogenous expression, these findings provide critical evidence that Riplet, and not TRIM25, is required endogenously for the ubiquitination of RIG-I. Despite this, loss of TRIM25 results in greater susceptibility to IAV infection in vivo, suggesting that it may have an alternative role in host antiviral defense. This study refines our understanding of RIG-I signaling in viral infections and will inform future studies in the field.


Subject(s)
Antiviral Agents/metabolism , DEAD Box Protein 58/metabolism , DNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Cell Line , Epithelial Cells/microbiology , Epithelial Cells/virology , Gene Deletion , Humans , Ligands , Mice, Inbred C57BL , RNA/metabolism , Receptors, Immunologic
10.
Nat Commun ; 9(1): 1558, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674694

ABSTRACT

The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines.


Subject(s)
Janus Kinase 1/chemistry , Janus Kinase 2/chemistry , Janus Kinase Inhibitors/chemistry , Suppressor of Cytokine Signaling 1 Protein/chemistry , Binding Sites , Crystallography, X-Ray , Cullin Proteins/genetics , Cullin Proteins/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Janus Kinase Inhibitors/metabolism , Models, Molecular , Phosphorylation , Protein Domains , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/chemistry , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
11.
Biochem J ; 475(2): 429-440, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29259080

ABSTRACT

The retinoic acid-inducible gene-I (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tripartite motif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 (caspase activation and recruitment domains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members.


Subject(s)
B30.2-SPRY Domain/genetics , Caspase Activation and Recruitment Domain/genetics , DEAD Box Protein 58/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Recombinant Fusion Proteins/chemistry , Sequence Deletion , Amino Acid Sequence , Animals , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HEK293 Cells , Histidine/genetics , Histidine/metabolism , Humans , Mice , Models, Molecular , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Immunologic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Stem Cells ; 35(8): 1948-1957, 2017 08.
Article in English | MEDLINE | ID: mdl-28577303

ABSTRACT

The hematopoietically expressed homeobox transcription factor (Hhex) is important for the maturation of definitive hematopoietic progenitors and B-cells during development. We have recently shown that in adult hematopoiesis, Hhex is dispensable for maintenance of hematopoietic stem cells (HSCs) and myeloid lineages but essential for the commitment of common lymphoid progenitors (CLPs) to lymphoid lineages. Here, we show that during serial bone marrow transplantation, Hhex-deleted HSCs are progressively lost, revealing an intrinsic defect in HSC self-renewal. Moreover, Hhex-deleted mice show markedly impaired hematopoietic recovery following myeloablation, due to a failure of progenitor expansion. In vitro, Hhex-null blast colonies were incapable of replating, implying a specific requirement for Hhex in immature progenitors. Transcriptome analysis of Hhex-null Lin- Sca+ Kit+ cells showed that Hhex deletion leads to derepression of polycomb repressive complex 2 (PRC2) and PRC1 target genes, including the Cdkn2a locus encoding the tumor suppressors p16Ink 4a and p19Arf . Indeed, loss of Cdkn2a restored the capacity of Hhex-null blast colonies to generate myeloid progenitors in vitro, as well as hematopoietic reconstitution following myeloablation in vivo. Thus, HSCs require Hhex to promote PRC2-mediated Cdkn2a repression to enable continued self-renewal and response to hematopoietic stress. Stem Cells 2017;35:1948-1957.


Subject(s)
Cell Self Renewal , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Animals , Cell Proliferation , Gene Deletion , Gene Expression Regulation , Hematopoietic Stem Cell Transplantation , Mice, Inbred C57BL , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism
14.
Elife ; 62017 02 14.
Article in English | MEDLINE | ID: mdl-28195529

ABSTRACT

Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.


Subject(s)
Cytokines/metabolism , ErbB Receptors/antagonists & inhibitors , Influenza A virus/immunology , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Body Weight , Disease Models, Animal , Humans , Mice , Mice, Knockout , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Suppressor of Cytokine Signaling Proteins/deficiency , Viral Load
15.
Cereb Cortex ; 27(1): 576-588, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26503265

ABSTRACT

Mutations of the reelin gene cause severe defects in cerebral cortex development and profound intellectual impairment. While many aspects of the reelin signaling pathway have been identified, the molecular and ultimate cellular consequences of reelin signaling remain unknown. Specifically, it is unclear if termination of reelin signaling is as important for normal cortical neuron migration as activation of reelin signaling. Using mice that are single or double deficient, we discovered that combined loss of the suppressors of cytokine signaling, SOCS6 and SOCS7, recapitulated the cortical layer inversion seen in mice lacking reelin and led to a dramatic increase in the reelin signaling molecule disabled (DAB1) in the cortex. The SRC homology domains of SOCS6 and SOCS7 bound DAB1 ex vivo. Mutation of DAB1 greatly diminished binding and protected from degradation by SOCS6. Phosphorylated DAB1 was elevated in cortical neurons in the absence of SOCS6 and SOCS7. Thus, constitutive activation of reelin signaling was observed to be equally detrimental as lack of activation. We hypothesize that, by terminating reelin signaling, SOCS6 and SOCS7 may allow new cycles of reelin signaling to occur and that these may be essential for cortical neuron migration.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Suppressor of Cytokine Signaling Proteins/deficiency , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Movement/physiology , Cerebral Cortex/pathology , Extracellular Matrix Proteins/genetics , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Reelin Protein , Serine Endopeptidases/genetics , Suppressor of Cytokine Signaling Proteins/genetics
16.
PLoS One ; 11(9): e0162111, 2016.
Article in English | MEDLINE | ID: mdl-27583437

ABSTRACT

The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease.


Subject(s)
Bone Marrow Cells/metabolism , Inflammation/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , CD8-Positive T-Lymphocytes/cytology , Granulocyte Colony-Stimulating Factor/biosynthesis , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics
17.
J Biol Chem ; 291(41): 21703-21716, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27539849

ABSTRACT

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are IL-6 family members with a wide range of biological functions. Human OSM (hOSM) and murine LIF (mLIF) act in mouse cells via a LIF receptor (LIFR)-glycoprotein 130 (gp130) heterodimer. In contrast, murine OSM (mOSM) signals mainly via an OSM receptor (OSMR)-gp130 heterodimer and binds with only very low affinity to mLIFR. hOSM and mLIF stimulate bone remodeling by both reducing osteocytic sclerostin and up-regulating the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) in osteoblasts. In the absence of OSMR, mOSM still strongly suppressed sclerostin and stimulated bone formation but did not induce RANKL, suggesting that intracellular signaling activated by the low affinity interaction of mOSM with mLIFR is different from the downstream effects when mLIF or hOSM interacts with the same receptor. Both STAT1 and STAT3 were activated by mOSM in wild type cells or by mLIF/hOSM in wild type and Osmr-/- cells. In contrast, in Osmr-/- primary osteocyte-like cells stimulated with mOSM (therefore acting through mLIFR), microarray expression profiling and Western blotting analysis identified preferential phosphorylation of STAT3 and induction of its target genes but not of STAT1 and its target genes; this correlated with reduced phosphorylation of both gp130 and LIFR. In a mouse model of spontaneous osteopenia caused by hyperactivation of STAT1/3 signaling downstream of gp130 (gp130Y757F/Y757F), STAT1 deletion rescued the osteopenic phenotype, indicating a beneficial effect of promoting STAT3 signaling over STAT1 downstream of gp130 in this low bone mass condition, and this may have therapeutic value.


Subject(s)
Bone Diseases, Metabolic/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Oncostatin M/metabolism , Osteocytes/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Animals , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Bone and Bones/metabolism , Bone and Bones/pathology , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Disease Models, Animal , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Mice , Oncostatin M/genetics , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M Receptor beta Subunit/metabolism , Organ Size , Osteocytes/pathology , Phosphorylation/genetics , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/genetics
18.
PLoS One ; 10(10): e0129110, 2015.
Article in English | MEDLINE | ID: mdl-26479247

ABSTRACT

The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF) has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown. We hypothesized that LIF would be required for normal trophoblast invasion and spiral artery remodeling in mice. Both LIF and its receptor (LIFRα) co-localized with cytokeratin-positive invasive endovascular extravillous trophoblasts (EVT) in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via administration of our unique LIFRα antagonist, PEGLA, resulted in abnormal trophoblast invasion and impaired spiral artery remodeling compared to PEG control. PEGLA-treated mouse decidual vessels were characterized by retention of α-smooth muscle actin (αSMA)-positive vascular smooth muscle cells (VSMCs), while PEG control decidual vessels were remodelled by cytokeratin-positive trophoblasts. LIF blockade did not alter F4/80-positive decidual macrophage numbers between treatment groups, but resulted in down-regulation of decidual transcript levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10), which are important immune cell activation factors that promote spiral artery remodeling during pregnancy. Our data suggest that LIF plays an important role in trophoblast invasion in vivo and may facilitate trophoblast-decidual-immune cell cross talk to enable adequate spiral artery remodeling.


Subject(s)
Arteries/drug effects , Arteries/physiology , Leukemia Inhibitory Factor/antagonists & inhibitors , Trophoblasts/cytology , Trophoblasts/drug effects , Vascular Remodeling/drug effects , Animals , Chemokine CCL2/genetics , Cytokine Receptor gp130/genetics , Decidua/blood supply , Decidua/drug effects , Embryo Implantation/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Interleukin-10/genetics , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Male , Mice , Mice, Inbred C57BL , Placentation/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Pregnancy , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism
20.
Sci Rep ; 5: 13237, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26272398

ABSTRACT

The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy.


Subject(s)
Abortion, Spontaneous/physiopathology , Leukemia Inhibitory Factor/metabolism , Placenta Diseases/physiopathology , Placentation , Animals , Female , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Polyethylene Glycols/pharmacology , Pregnancy , Receptors, OSM-LIF/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL