Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 491
1.
Environ Int ; 188: 108684, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38776651

Green space exposure has been associated with improved mental, physical and general health. However, the underlying biological mechanisms remain largely unknown. The aim of this study was to investigate the association between green space exposure and cord and child blood DNA methylation. Data from eight European birth cohorts with a total of 2,988 newborns and 1,849 children were used. Two indicators of residential green space exposure were assessed: (i) surrounding greenness (satellite-based Normalized Difference Vegetation Index (NDVI) in buffers of 100 m and 300 m) and (ii) proximity to green space (having a green space ≥ 5,000 m2 within a distance of 300 m). For these indicators we assessed two exposure windows: (i) pregnancy, and (ii) the period from pregnancy to child blood DNA methylation assessment, named as cumulative exposure. DNA methylation was measured with the Illumina 450K or EPIC arrays. To identify differentially methylated positions (DMPs) we fitted robust linear regression models between pregnancy green space exposure and cord blood DNA methylation and between cumulative green space exposure and child blood DNA methylation. Two sensitivity analyses were conducted: (i) without adjusting for cellular composition, and (ii) adjusting for air pollution. Cohort results were combined through fixed-effect inverse variance weighted meta-analyses. Differentially methylated regions (DMRs) were identified from meta-analysed results using the Enmix-combp and DMRcate methods. There was no statistical evidence of pregnancy or cumulative exposures associating with any DMP (False Discovery Rate, FDR, p-value < 0.05). However, surrounding greenness exposure was inversely associated with four DMRs (three in cord blood and one in child blood) annotated to ADAMTS2, KCNQ1DN, SLC6A12 and SDK1 genes. Results did not change substantially in the sensitivity analyses. Overall, we found little evidence of the association between green space exposure and blood DNA methylation. Although we identified associations between surrounding greenness exposure with four DMRs, these findings require replication.

4.
Commun Med (Lond) ; 4(1): 98, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783062

BACKGROUND: Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data. METHODS: In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions. RESULTS: ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health. CONCLUSIONS: Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.


Growing up in different environments can greatly affect children's health later in life. This research looked at how living in cities, being exposed to chemicals, and other experiences before birth and during childhood, work together to influence children's mental, cardiovascular and respiratory health. We used advanced computer programs to help us understand these effects and estimate health risk scores. These scores are simple numerical measures that help us quantify the likelihood of children developing health issues based on their environmental exposures. Using those scores, the study identified key factors impacting children's health, in particular psycho-social, perceived environmental and prenatal pollutant exposures for mental health. It also revealed complex patterns and interactions between environmental factors. The results highlighted the potential of such risk scores to support the identification of actionable factors in high-risk children, informing tailored prevention measures in healthcare.

6.
Circulation ; 149(16): 1298-1314, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38620080

Urban environments contribute substantially to the rising burden of cardiometabolic diseases worldwide. Cities are complex adaptive systems that continually exchange resources, shaping exposures relevant to human health such as air pollution, noise, and chemical exposures. In addition, urban infrastructure and provisioning systems influence multiple domains of health risk, including behaviors, psychological stress, pollution, and nutrition through various pathways (eg, physical inactivity, air pollution, noise, heat stress, food systems, the availability of green space, and contaminant exposures). Beyond cardiometabolic health, city design may also affect climate change through energy and material consumption that share many of the same drivers with cardiometabolic diseases. Integrated spatial planning focusing on developing sustainable compact cities could simultaneously create heart-healthy and environmentally healthy city designs. This article reviews current evidence on the associations between the urban exposome (totality of exposures a person experiences, including environmental, occupational, lifestyle, social, and psychological factors) and cardiometabolic diseases within a systems science framework, and examines urban planning principles (eg, connectivity, density, diversity of land use, destination accessibility, and distance to transit). We highlight critical knowledge gaps regarding built-environment feature thresholds for optimizing cardiometabolic health outcomes. Last, we discuss emerging models and metrics to align urban development with the dual goals of mitigating cardiometabolic diseases while reducing climate change through cross-sector collaboration, governance, and community engagement. This review demonstrates that cities represent crucial settings for implementing policies and interventions to simultaneously tackle the global epidemics of cardiovascular disease and climate change.


Air Pollution , Urban Health , Humans , Cities/epidemiology , Air Pollution/adverse effects
8.
Environ Res ; 251(Pt 1): 118550, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38432569

INTRODUCTION: Current urban and transport planning practices have significant negative health, environmental, social and economic impacts in most cities. New urban development models and policies are needed to reduce these negative impacts. The Superblock model is one such innovative urban model that can significantly reduce these negative impacts through reshaping public spaces into more diverse uses such as increase in green space, infrastructure supporting social contacts and physical activity, and through prioritization of active mobility and public transport, thereby reducing air pollution, noise and urban heat island effects. This paper reviews key aspects of the Superblock model, its implementation and initial evaluations in Barcelona and the potential international uptake of the model in Europe and globally, focusing on environmental, climate, lifestyle, liveability and health aspects. METHODS: We used a narrative meta-review approach and PubMed and Google scholar databases were searched using specific terms. RESULTS: The implementation of the Super block model in Barcelona is slow, but with initial improvement in, for example, environmental, lifestyle, liveability and health indicators, although not so consistently. When applied on a large scale, the implementation of the Superblock model is not only likely to result in better environmental conditions, health and wellbeing, but can also contribute to the fight against the climate crisis. There is a need for further expansion of the program and further evaluation of its impacts and answers to related concerns, such as environmental equity and gentrification, traffic and related environmental exposure displacement. The implementation of the Superblock model gained a growing international reputation and variations of it are being planned or implemented in cities worldwide. Initial modelling exercises showed that it could be implemented in large parts of many cities. CONCLUSION: The Superblock model is an innovative urban model that addresses environmental, climate, liveability and health concerns in cities. Adapted versions of the Barcelona Superblock model are being implemented in cities around Europe and further implementation, monitoring and evaluation are encouraged. The Superblock model can be considered an important public health intervention that will reduce mortality and morbidity and generate cost savings for health and other sectors.

9.
Environ Int ; 186: 108593, 2024 Apr.
Article En | MEDLINE | ID: mdl-38531235

Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.


Climate Change , Conservation of Natural Resources , Forests , Humans , Europe , Conservation of Natural Resources/methods , Carbon Sequestration , Forestry/methods
10.
Int J Epidemiol ; 53(2)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38514998

BACKGROUND: A growing body of evidence has reported positive associations between long-term exposure to air pollution and poor COVID-19 outcomes. Inconsistent findings have been reported for short-term air pollution, mostly from ecological study designs. Using individual-level data, we studied the association between short-term variation in air pollutants [nitrogen dioxide (NO2), particulate matter with a diameter of <2.5 µm (PM2.5) and a diameter of <10 µm (PM10) and ozone (O3)] and hospital admission among individuals diagnosed with COVID-19. METHODS: The COVAIR-CAT (Air pollution in relation to COVID-19 morbidity and mortality: a large population-based cohort study in Catalonia, Spain) cohort is a large population-based cohort in Catalonia, Spain including 240 902 individuals diagnosed with COVID-19 in the primary care system from 1 March until 31 December 2020. Our outcome was hospitalization within 30 days of COVID-19 diagnosis. We used individual residential address to assign daily air-pollution exposure, estimated using machine-learning methods for spatiotemporal prediction. For each pandemic wave, we fitted Cox proportional-hazards models accounting for non-linear-distributed lagged exposure over the previous 7 days. RESULTS: Results differed considerably by pandemic wave. During the second wave, an interquartile-range increase in cumulative weekly exposure to air pollution (lag0_7) was associated with a 12% increase (95% CI: 4% to 20%) in COVID-19 hospitalizations for NO2, 8% (95% CI: 1% to 16%) for PM2.5 and 9% (95% CI: 3% to 15%) for PM10. We observed consistent positive associations for same-day (lag0) exposure, whereas lag-specific associations beyond lag0 were generally not statistically significant. CONCLUSIONS: Our study suggests positive associations between NO2, PM2.5 and PM10 and hospitalization risk among individuals diagnosed with COVID-19 during the second wave. Cumulative hazard ratios were largely driven by exposure on the same day as hospitalization.


Air Pollutants , Air Pollution , COVID-19 , Ozone , Humans , Spain/epidemiology , Cohort Studies , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , COVID-19 Testing , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Ozone/adverse effects , Ozone/analysis , Hospitalization , Hospitals , Environmental Exposure/adverse effects , Environmental Exposure/analysis
11.
Article En | MEDLINE | ID: mdl-38424359

BACKGROUND: Exposure to green space can protect against poor health through a variety of mechanisms. However, there is heterogeneity in methodological approaches to exposure assessments which makes creating effective policy recommendations challenging. OBJECTIVE: Critically evaluate the use of a satellite-derived exposure metric, the Enhanced Vegetation Index (EVI), for assessing access to different types of green space in epidemiological studies. METHODS: We used Landsat 5-8 (30 m resolution) to calculate average EVI for a 300 m radius surrounding 1.4 million households in Wales, UK for 2018. We calculated two additional measures using topographic vector data to represent access to green spaces within 300 m of household locations. The two topographic vector-based measures were total green space area stratified by type and average private garden size. We used linear regression models to test whether EVI could discriminate between publicly accessible and private green space and Pearson correlation to test associations between EVI and green space types. RESULTS: Mean EVI for a 300 m radius surrounding households in Wales was 0.28 (IQR = 0.12). Total green space area and average private garden size were significantly positively associated with corresponding EVI measures (ß = < 0.0001, 95% CI: 0.0000, 0.0000; ß = 0.0001, 95% CI: 0.0001, 0.0001 respectively). In urban areas, as average garden size increases by 1 m2, EVI increases by 0.0002. Therefore, in urban areas, to see a 0.1 unit increase in EVI index score, garden size would need to increase by 500 m2. The very small ß values represent no 'measurable real-world' associations. When stratified by type, we observed no strong associations between greenspace and EVI. IMPACT: It is a widely implemented assumption in epidiological studies that an increase in EVI is equivalent to an increase in greenness and/or green space. We used linear regression models to test associations between EVI and potential sources of green reflectance at a neighbourhood level using satellite imagery from 2018. We compared EVI measures with a 'gold standard' vector-based dataset that defines publicly accessible and private green spaces. We found that EVI should be interpreted with care as a greater EVI score does not necessarily mean greater access to publicly available green spaces in the hyperlocal environment.

12.
Environ Pollut ; 346: 123559, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38382733

Built environment characteristics and related environmental exposures and behaviors have been, separately, implicated in the development of poor mental health. However, it is unclear how these factors act together in relation to mental health. We studied these factors simultaneously to evaluate the impact of the built environment, and the mediating role of environmental exposures and physical activity, on mental health, while also studying moderation by sex, age, and length of residence. We used a cross-sectional population-based sample of 3145 individuals aged 15-97 years from Barcelona, Spain. Time spent walking and mental health status were assessed with validated questionnaires, administered through a face-to-face interview. We characterized the built environment (e.g., building, population and intersection density and green space), road traffic noise, and ambient air pollution at the residential level using land cover maps, remote sensing, noise maps and land use regression models. Adjusted regression models accounting for spatial clustering were analyzed to study associations between built environment attributes and mental health, and mediation and moderation effects. Density attributes were directly or indirectly, through air pollution and less consistently through walking, associated with poor mental health. Green space indicators were associated with lower prevalence of poor mental health, partly through lower air pollution exposure and more walking. In some cases, these associations differed by sex, age or length of residence. Non-linear associations of density indicators with environmental exposures, and of particulate matter with poor mental health indicated threshold effects. We conclude that living in dense areas with high air pollution concentrations was associated with poor mental health. On the other hand, green areas with lower air pollution concentrations were protective against poor mental health. Greater urban density might benefit health, but might only do so when air pollution concentrations are low.


Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Cities , Mental Health , Cross-Sectional Studies , Air Pollution/analysis , Environmental Exposure/analysis , Particulate Matter/analysis , Built Environment , Life Style
13.
Environ Pollut ; 346: 123612, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38387546

Growing evidence suggests that urban environment may influence cognition and behavior in children, but the underlying pollutant and neurobiological mechanisms are unclear. We evaluated the association of built environment and urban natural space indicators during pregnancy and childhood with brain white matter microstructure in preadolescents, and examined the potential mediating role of air pollution and road-traffic noise. We used data of the Generation R Study, a population-based birth cohort in Rotterdam, the Netherlands (n = 2725; 2002-2006) for the primary analyses. Replication of the main findings was attempted on an independent neuroimaging dataset from the PELAGIE birth cohort, France (n = 95; 2002-2006). We assessed exposures to 12 built environment and 4 urban natural spaces indicators from conception up to 9 years of age. We computed 2 white matter microstructure outcomes (i.e., average of fractional anisotropy (FA) and mean diffusivity (MD) from 12 white matte tracts) from diffusion tensor imaging data. Greater distance to the nearest major green space during pregnancy was associated with higher whole-brain FA (0.001 (95%CI 0.000; 0.002) per 7 m increase), and higher land use diversity during childhood was associated with lower whole-brain MD (-0.001 (95%CI -0.002; -0.000) per 0.12-point increase), with no evidence of mediation by air pollution nor road-traffic noise. Higher percentage of transport and lower surrounding greenness during pregnancy were associated with lower whole-brain FA, and road-traffic noise mediated 19% and 52% of these associations, respectively. We found estimates in the same direction in the PELAGIE cohort, although confidence intervals were larger and included the null. This study suggests an association between urban environment and white matter microstructure, mainly through road-traffic noise, indicating that greater access to green space nearby might promote white matter development.


Air Pollution , White Matter , Child , Female , Pregnancy , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Birth Cohort , Brain
15.
Lancet Diabetes Endocrinol ; 12(3): 196-208, 2024 Mar.
Article En | MEDLINE | ID: mdl-38310921

The Global Burden of Disease assessment estimates that 20% of global type 2 diabetes cases are related to chronic exposure to particulate matter (PM) with a diameter of 2·5 µm or less (PM2·5). With 99% of the global population residing in areas where air pollution levels are above current WHO air quality guidelines, and increasing concern in regard to the common drivers of air pollution and climate change, there is a compelling need to understand the connection between air pollution and cardiometabolic disease, and pathways to address this preventable risk factor. This Review provides an up to date summary of the epidemiological evidence and mechanistic underpinnings linking air pollution with cardiometabolic risk. We also outline approaches to improve awareness, and discuss personal-level, community, governmental, and policy interventions to help mitigate the growing global public health risk of air pollution exposure.


Air Pollution , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Air Pollution/adverse effects , Climate Change , Public Health , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology
16.
Environ Res ; 250: 118522, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38403148

Whilst green space has been linked to healthier sleep outcomes, the roles of specific types of nature exposure, potential underlying mechanisms, and between-country variations in nature-sleep associations have received little attention. Drawing on cross-sectional survey data from an 18-country sample of adults (N = 16,077) the current study examined: 1) the relative associations between six different types of nature exposure (streetscape greenery, blue view from home, green space within 1 km, coast within 1 km, green space visits, blue space visits) and insufficient sleep (<6 h vs. 7-10 h per day); 2) whether these relationships were mediated by better mental wellbeing and/or physical activity; and 3) the consistency of these pathways among the different countries. After controlling for covariates, neighbourhood nature measures (green space, coast within 1 km) were not significantly associated with insufficient sleep; but nature visible from home (streetscape greenery, blue views) and recreational visits to green and blue spaces were each associated with less insufficient sleep. Significant nature-sleep associations were mediated, to varying degrees, by better mental wellbeing, but not self-reported physical activity. Country-level heterogeneity in the strength of nature-sleep associations was observed. Increasing nature visible from the home may represent a promising strategy for promoting healthier sleep duration at the population level, whilst nature-based interventions encouraging individuals to spend time in local green/blue spaces may be an appropriate target to assist individuals affected by insufficient sleep.


Sleep , Humans , Male , Female , Middle Aged , Adult , Cross-Sectional Studies , Mental Health , Aged , Young Adult , Adolescent , Exercise , Nature , Sleep Duration
17.
Curr Environ Health Rep ; 11(2): 300-316, 2024 06.
Article En | MEDLINE | ID: mdl-38369581

PURPOSE OF REVIEW: This scoping review aims to assess the impact of air pollution, traffic noise, heat, and green and blue space exposures on the physical and cognitive development of school-age children and adolescents. While existing evidence indicates adverse effects of transport-related exposures on their health, a comprehensive scoping review is necessary to consolidate findings on various urban environmental exposures' effects on children's development. RECENT FINDINGS: There is consistent evidence on how air pollution negatively affects children's cognitive and respiratory health and learning performance, increasing their susceptibility to diseases in their adult life. Scientific evidence on heat and traffic noise, while less researched, indicates that they negatively affect children's health. On the contrary, green space exposure seems to benefit or mitigate these adverse effects, suggesting a potential strategy to promote children's cognitive and physical development in urban settings. This review underscores the substantial impact of urban exposures on the physical and mental development of children and adolescents. It highlights adverse health effects that can extend into adulthood, affecting academic opportunities and well-being beyond health. While acknowledging the necessity for more research on the mechanisms of air pollution effects and associations with heat and noise exposure, the review advocates prioritizing policy changes and urban planning interventions. This includes minimizing air pollution and traffic noise while enhancing urban vegetation, particularly in school environments, to ensure the healthy development of children and promote lifelong health.


Air Pollution , Environmental Exposure , Humans , Child , Air Pollution/adverse effects , Adolescent , Environmental Exposure/adverse effects , Learning , Child Health , Child Development/drug effects , Air Pollutants/analysis , Air Pollutants/adverse effects , Noise, Transportation/adverse effects
18.
Environ Int ; 185: 108453, 2024 Mar.
Article En | MEDLINE | ID: mdl-38368715

BACKGROUND: Urban environmental exposures associate with adult depression, but it is unclear whether they are associated to postpartum depression (PPD). OBJECTIVES: We investigated associations between urban environment exposures during pregnancy and PPD. METHODS: We included women with singleton deliveries to liveborn children from 12 European birth cohorts (N with minimum one exposure = 30,772, analysis N range 17,686-30,716 depending on exposure; representing 26-46 % of the 66,825 eligible women). We estimated maternal exposure during pregnancy to ambient air pollution with nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10), road traffic noise (Lden), natural spaces (Normalised Difference Vegetation Index; NDVI, proximity to major green or blue spaces) and built environment (population density, facility richness and walkability). Maternal PPD was assessed 3-18 months after birth using self-completed questionnaires. We used adjusted logistic regression models to estimate cohort-specific associations between each exposure and PPD and combined results via meta-analysis using DataSHIELD. RESULTS: Of the 30,772 women included, 3,078 (10 %) reported having PPD. Exposure to PM10 was associated with slightly increased odds of PPD (adjusted odd ratios (OR) of 1.08 [95 % Confidence Intervals (CI): 0.99, 1.17] per inter quartile range increment of PM10) whilst associations for exposure to NO2 and PM2.5 were close to null. Exposure to high levels of road traffic noise (≥65 dB vs. < 65 dB) was associated with an OR of 1.12 [CI: 0.95, 1.32]. Associations between green spaces and PPD were close to null; whilst proximity to major blue spaces was associated with increased risk of PPD (OR 1.12, 95 %CI: 1.00, 1.26). All associations between built environment and PPD were close to null. Multiple exposure models showed similar results. DISCUSSION: The study findings suggest that exposure to PM10, road traffic noise and blue spaces in pregnancy may increase PPD risk, however future studies should explore this causally.


Air Pollutants , Air Pollution , Depression, Postpartum , Adult , Female , Humans , Pregnancy , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Birth Cohort , Depression, Postpartum/epidemiology , Depression, Postpartum/etiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Infant, Newborn
19.
Environ Int ; 185: 108530, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422877

OBJECTIVE: Factors that shape individuals' vulnerability to the effects of air pollution on COVID-19 severity remain poorly understood. We evaluated whether the association between long-term exposure to ambient NO2, PM2.5, and PM10 and COVID-19 hospitalisation differs by age, sex, individual income, area-level socioeconomic status, arterial hypertension, diabetes mellitus, and chronic obstructive pulmonary disease. METHODS: We analysed a population-based cohort of 4,639,184 adults in Catalonia, Spain, during 2020. We fitted Cox proportional hazard models adjusted for several potential confounding factors and evaluated the interaction effect between vulnerability indicators and the 2019 annual average of NO2, PM2.5, and PM10. We evaluated interaction on both additive and multiplicative scales. RESULTS: Overall, the association was additive between air pollution and the vulnerable groups. Air pollution and vulnerability indicators had a synergistic (greater than additive) effect for males and individuals with low income or living in the most deprived neighbourhoods. The Relative Excess Risk due to Interaction (RERI) was 0.21, 95 % CI, 0.15 to 0.27 for NO2 and 0.16, 95 % CI, 0.11 to 0.22 for PM2.5 for males; 0.13, 95 % CI, 0.09 to 0.18 for NO2 and 0.10, 95 % CI, 0.05 to 0.14 for PM2.5 for lower individual income and 0.17, 95 % CI, 0.12 to 0.22 for NO2 and 0.09, 95 % CI, 0.05 to 0.14 for PM2.5 for lower area-level socioeconomic status. Results for PM10 were similar to PM2.5. Results on multiplicative scale were inconsistent. CONCLUSIONS: Long-term exposure to air pollution had a larger synergistic effect on COVID-19 hospitalisation for males and those with lower individual- and area-level socioeconomic status.


Air Pollutants , Air Pollution , COVID-19 , Male , Adult , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Hospitalization
20.
Geohealth ; 8(1): e2023GH000905, 2024 Jan.
Article En | MEDLINE | ID: mdl-38264534

Beneficial effects on health outcomes have been observed from exposure to spaces with substantial green vegetation ("greenspace"). This includes studies of greenspace exposure on birth outcomes; however, these have been conducted largely in urban regions. We characterized residential exposure to greenspace and land cover diversity during pregnancy in rural northern New England, USA, investigating whether variation in greenspace or diversity related to newborn outcomes. Five landscape variables (greenspace land cover, land cover diversity, impervious surface area, tree canopy cover, and the Normalized Difference Vegetation Index) were aggregated within six circular zones of radii from 100 to 3,000 m around residential addresses, and distance to conservation land was measured, providing a total of 31 greenspace and diversity metrics. Four birth outcomes along with potentially confounding variables were obtained from 1,440 participants in the New Hampshire Birth Cohort Study. Higher greenspace land cover up to 3,000 m was associated with larger newborn head circumference, while impervious surface area (non-greenspace) had the opposite association. Further, birth length was positively associated with land cover diversity. These findings support beneficial health impacts of greenspace exposure observed in urban regions for certain health outcomes, such as newborn head circumference and length but not others such as birthweight and gestational age. Further our results indicate that larger radius buffer zones may be needed to characterize the rural landscape. Vegetation indices may not be interchangeable with other greenspace metrics such as land cover and impervious surface area in rural landscapes.

...