Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(23): 16324-16331, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810220

ABSTRACT

Ultrasmall metal oxide nanoparticles (<5 nm) potentially have new properties, different from conventional nanoparticles. The precise size control of ultrasmall nanoparticles remains difficult for metal oxide. In this study, the size of CeO2 nanoparticles was precisely controlled (1.3-9.4 nm) using a continuous-flow hydrothermal reactor, and the atomic distortion that occurs in ultrasmall metal oxides was explored for CeO2. The crystalline nanoparticles grow rapidly like droplets via coalescence, although they reach a critical particle size (∼3 to 4 nm), beyond which they grow slowly and change shape through ripening. In the initial growth stage, the ultrasmall nanoparticles exhibit disordered atomic configurations, including stacking faults. In ultrasmall CeO2 nanoparticles (<3 to 4 nm), unusual electron localization occurs on Ce 4f orbitals (Ce3+) as a result of O disordering, regardless of O vacancy concentration. This behavior differs from ordinary electron localization caused by the presence of O vacancies. The ultrasmall metal oxides have extraordinary distortion states, making them promising for use in nanotechnology applications. Furthermore, the proposed synthesis method can be applied to various other metal oxides and allows exploration of their properties.

2.
Langmuir ; 34(29): 8516-8521, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29950098

ABSTRACT

Polymers with a perylenediimide (PDI) side chain (PAc12PDI) consist of two kinds of crystalline structures with various types of orientations in a thin film. Understanding the population of the microcrystalline structure and its orientation along the thickness is strongly desired. Grazing-incidence wide-angle X-ray diffraction (GIWAXD) measurements with hard X-rays, which are generally chosen as λ = 0.1 nm, are a powerful tool to evaluate the molecular aggregation structure in thin films. A depth-resolved analysis for the outermost surface of the polymeric materials using conventional GIWAXD measurements, however, has limitations on depth resolution because the X-ray penetration depth dramatically increases above the critical angle. Meanwhile, tender X-rays (λ = 0.5 nm) have the potential advantage that the penetration depth gradually increases above the critical angle, leading to precise characterization for the population of crystallite distribution along the thickness. The population of the microcrystalline states in the PAc12PDI thin film was precisely characterized utilizing GIWAXD measurements using tender X-rays. The outermost surface of the PAc12PDI thin film is occupied by a monoclinic lattice with a = 2.38 nm, b = 0.74 nm, c = 5.98 nm, and ß = 108.13°, while maintaining the c-axis perpendicular to the substrate surface. Additionally, the presence of solid substrate controls the formation of the crystallite with unidirectional orientation.

3.
J Am Chem Soc ; 140(22): 6883-6892, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29749234

ABSTRACT

Stable square planar organocopper(III) complexes (CuNCC2, CuNCC4, and CuBN) supported by carbacorrole-based tetradentate macrocyclic ligands with NNNC coordination cores were synthesized, and their structures were elucidated by spectroscopic means including X-ray crystallographic analysis. On the basis of their distinct planar structures, X-ray absorption/photoelectron spectroscopic features, and temperature-independent diamagnetic nature, these organocopper complexes can be preferably considered as novel organocopper(III) species. The remarkable stability of the high-valent Cu(III) states of the complexes stems from the closed-shell electronic structure derived from the peculiar NNNC coordination of the corrole-modified frameworks, which contrasts with the redox-noninnocent radical nature of regular corrole copper(II) complexes with an NNNN core. The proposed structure was supported by DFT (B3LYP) calculations. Furthermore, a π-laminated dimer architecture linked through the inner carbons was obtained from the one-electron oxidation of CuNCC4. We envisage that the precise manipulation of the molecular orbital energies and redox profiles of these organometallic corrole complexes could eventually lead to the isolation of yet unexplored high-valent metal species and the development of their organometallic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL