Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 76(10): 1828-34, 2012.
Article in English | MEDLINE | ID: mdl-23047091

ABSTRACT

Hydrogenated resistant maltodextrin (H-RMD) is a dietary fiber whose energy value has not previously been reported. We evaluated the energy value of H-RMD. We conducted an in vitro digestion test, in vivo blood glucose measurement after ingestion, in vitro fermentability test, excretion test by rats and indirect calorimetry combined with breath hydrogen measurement for humans. H-RMD was hydrolyzed in vitro in a very small amount by human salivary amylase and by the rat small intestinal mucosal enzyme. Ingestion of H-RMD did not increase the blood glucose level of human subjects. An examination of in vitro fermentability suggested that H-RMD was fermented by several enterobacteria. Oral administration of H-RMD showed a saccharide excretion ratio of 42% by rats. A combination of indirect calorimetry and breath hydrogen measurement evaluated the metabolizable energy of H-RMD as 1.1 kcal/g in humans. We concluded from these results that H-RMD was not digested or absorbed in the upper gastrointestinal tract and was fermented in the colon to produce short-chain fatty acids which provided a lower amount of energy than that of resistant maltodextrin.


Subject(s)
Energy Metabolism , Polysaccharides/metabolism , Absorption , Adult , Animals , Blood Glucose/metabolism , Breath Tests , Digestion , Eating , Energy Metabolism/drug effects , Enterobacter/metabolism , Feces/chemistry , Fermentation , Humans , Hydrogenation , Male , Polysaccharides/administration & dosage , Polysaccharides/pharmacokinetics , Polysaccharides/pharmacology , Rats
2.
J Agric Food Chem ; 57(17): 7659-65, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19663481

ABSTRACT

Total nondigestible carbohydrate (NDC) in foods was determined by combining, not modifications, AOAC Official Methods 991.43, 2001.03, and 2002.02. Total NDC included insoluble dietary fiber (IDF) + high-molecular-weight soluble dietary fiber (HMWSDF), nondigestible oligosaccharides (NDO) not precipitated in ethanol solution, and resistant starch (RS). Eight sources of NDC (cellulose, wheat bran, gum arabic, resistant maltodextrin, polydextrose, fructooligosaccharide, galactooligosaccharides, and RS) were incorporated in different combinations into standard formula bread samples. All of the NDC sources and bread samples were analyzed for their (1) IDF + HMWSDF content with corrections for residual RS amount using AOAC Official Method 991.43, (2) NDO by liquid chromatography (LC) in AOAC Official Method 2001.03, and (3) RS by AOAC Official Method 2002.02. The correlation coefficient (R(2)) comparing calculated amounts versus measured amounts of total NDC in 11 bread samples was 0.92. Analysis of commercial food samples was also well matched with the DF + NDO value on their nutritional label. Consequently, we confirmed a single measurement of LC can determine all NDO in foods, and total NDC in foods can be determined by unifying existing AOAC Official Methods.


Subject(s)
Carbohydrates/analysis , Chromatography, Liquid , Dietary Fiber/analysis , Food Analysis/methods , Bread/analysis , Chemical Precipitation , Filtration , Glucan 1,4-alpha-Glucosidase/metabolism , Oligosaccharides/analysis , Peptide Hydrolases/metabolism , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL