Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Reprod Dev ; 68(1): 53-61, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-34866119

ABSTRACT

During cryopreservation, spermatozoa may suffer cold and cryo-induced injuries -associated with alterations in cell defense systems- that are detrimental to their function and subsequent fertility. This study aimed to determine the efficacy of supplementing the semen freezing extender with the antioxidant reduced glutathione (GSH) in cattle. Semen was collected from four bulls and diluted in a freezing extender supplemented with or without GSH (0, 1, 5, and 10 mM) before the cooling step of the cryopreservation process. After thawing, the quality of the frozen-thawed semen was investigated for motility, viability, acrosomal and DNA integrity, and subsequent embryo development after in vitro fertilization of bovine oocytes. Additionally, semen from one of the bulls was used to analyze semen antioxidative potential, sperm penetration into oocytes, male pronucleus formation rate, and embryo DNA integrity. The sperm quality varied among bulls after GSH supplementation. One bull had decreased sperm total motility, and two bulls had decreased sperm DNA integrity. GSH supplementation had positive effects on embryo development for three bulls. Two of them showed both improved cleavage and blastocyst formation rates, while the other one only showed an improved cleavage rate. We observed positive effects on early male pronucleus formation and no negative effects on DNA integrity and cell number in blastocyst stage embryos. Although the effect varies depending on individual bulls and GSH concentration, GSH supplementation in semen may improve in vitro embryo production from frozen semen.


Subject(s)
Semen Preservation , Animals , Cattle , Cryopreservation/veterinary , Dietary Supplements , Fertilization in Vitro/veterinary , Freezing , Glutathione/pharmacology , Male , Semen , Semen Analysis/veterinary , Semen Preservation/veterinary , Sperm Motility , Spermatozoa
2.
J Reprod Dev ; 67(2): 99-107, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33441501

ABSTRACT

For semen suppliers, predicting the low fertility of service bull candidates before artificial insemination would help prevent economic loss; however, predicting bull fertility through in vitro assessment of semen is yet to be established. In the present study, we focused on the methylated CpG sites of sperm nuclear DNA and examined methylation levels to screen new biomarkers for predicting bull fertility. In frozen-thawed semen samples collected from Japanese Black bulls, for which the sire conception rate (SCR) was recorded, the methylation level of each CpG site was analyzed using human methylation microarray. According to regression analysis, 143 CpG sites related to SCR were significantly differentially methylated. Whole genome bisulfite sequence data were obtained from three semen samples and the differentially methylated regions (DMRs) that included the target CpG sites selected by human methylation microarray were confirmed. Using combined bisulfite restriction analysis, fertility-related methylation changes were detected in 10 DMRs. With the exception of one DMR, the methylation levels of these DMRs were significantly different between groups with high fertility (> 50%) and low fertility (< 40%). From multiple regression analysis of methylation levels and SCR, three DMRs were selected that could effectively predict bull fertility. We suggest that these fertility-related differences in spermatozoal methylation levels could be new epigenetic biomarkers for predicting bull fertility.


Subject(s)
Breeding/methods , CpG Islands , DNA Methylation , Epigenesis, Genetic , Insemination, Artificial/veterinary , Spermatozoa/metabolism , Animals , Biomarkers/metabolism , Cattle , Fertility/genetics , Fertilization , Male , Oligonucleotide Array Sequence Analysis , Regression Analysis , Semen Analysis , Semen Preservation
3.
J Reprod Dev ; 65(4): 305-312, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31061296

ABSTRACT

Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a previous study, we analyzed the genome-wide DNA methylation profiles of bull spermatozoa using a human DNA methylation microarray and identified one CpG site (CpG-1) that potentially reflects age-related methylation changes. In the present study, cryopreserved semen samples from a Japanese Black bull were collected at five different ages, which were referred to as JD1-5: 14, 19, 28, 54, and 162 months, respectively, and were used for genome-wide DNA methylation analysis and in vitro fertilization (IVF). Distinct age-related changes in methylation profiles were observed, and 77 CpG sites were found to be differently methylated between young and adult samples (JD1-2 vs. JD4-5). Using combined bisulfite restriction analysis (COBRA), nine CpG sites (including CpG-1) were confirmed to exhibit significant differences in their age-dependent methylation levels. Eight CpG sites showed an age-dependent increase in their methylation levels, whereas only one site showed age-dependent hypomethylation; in particular, these changes in methylation levels occurred rapidly at a young age. COBRA revealed low methylation levels in some CpG regions in the majority of the IVF blastocyst-stage embryos derived from spermatozoa at JD2-5. Interestingly, bulls with different ages did not show differences in their methylation levels. In conclusion, our findings indicated that methylation levels at nine CpG sites in spermatozoa changed with increasing age and that some CpG regions were demethylated after fertilization. Further studies are required to determine whether age-dependent different methylation levels in bull spermatozoa can affect fertility.


Subject(s)
Aging/genetics , Blastocyst/metabolism , CpG Islands/genetics , DNA Methylation , Embryonic Development/genetics , Spermatozoa/metabolism , Age Factors , Animals , Cattle , Cells, Cultured , Combinatorial Chemistry Techniques/methods , DNA Methylation/genetics , Embryo Culture Techniques , Embryo, Mammalian , Female , Fertilization in Vitro/veterinary , Humans , Male , Oligonucleotide Array Sequence Analysis/methods , Restriction Mapping/methods , Sequence Analysis, DNA/methods , Sulfites/chemistry
4.
Anim Sci J ; 89(2): 273-288, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154485

ABSTRACT

Growth hormone secretagogue receptor 1a (GHSR1a), growth hormone (GH), growth hormone receptor (GHR), non-SMC condensin I complex, subunit G (NCAPG) and stearoyl-CoA desaturase (SCD), are known to play important roles in growth and lipid metabolisms. Single and epistatic effects of the five genes on carcass, price-related and fatty acid (FA) composition traits were analyzed in a commercial Japanese Black cattle population of Ibaraki Prefecture. A total of 650 steers and 116 heifers for carcass and price-related traits, and 158 steers for FA composition traits were used in this study. Epistatic effects between pairs of the five genes were found in several traits. Alleles showing strain-specific differences in the five genes had significant single and epistatic effects in some traits. The data suggest that a TG-repeat polymorphism of the GHSR1a.5'UTR-(TG)n locus plays a central role in gene-gene epistatic interaction of FA composition traits in the adipose tissue of Japanese Black cattle.


Subject(s)
5' Untranslated Regions/genetics , Adipose Tissue/metabolism , Cattle/genetics , Cattle/metabolism , Cell Cycle Proteins/genetics , Commerce , Epistasis, Genetic/genetics , Fatty Acids/analysis , Growth Hormone/genetics , Meat/analysis , Meat/economics , Multifactorial Inheritance/genetics , Receptors, Ghrelin/genetics , Receptors, Somatotropin/genetics , Stearoyl-CoA Desaturase/genetics , Alleles , Animals , Female , Lipid Metabolism/genetics , Male
5.
J Reprod Dev ; 63(3): 279-287, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28320989

ABSTRACT

The methylation status of sperm DNA differs between individual bulls. However, the relationship between methylation status and bull sperm parameters is not well elucidated. The present study investigated genome-wide methylation profiles at 450,000 CpG sites in bull spermatozoa by using a human DNA methylation microarray. Semen samples from three adult Japanese Black bulls with different in vitro fertilization (IVF) results and from a young Holstein bull through sexual maturation (at ages 10, 10.5, 15, and 25 months) were used for the analysis. The heatmap displaying the results of microarray analysis shows inter- and intra-individual differences in methylation profiles. After setting a cut-off of 0.2 for differences between ages (10, 10.5 vs. 15, 25 months) or between IVF results (developed to the blastocyst-stage, > 20% vs. < 10%), different methylation levels were detected at approximately 100 CpGs. We confirmed the different DNA methylation levels of CpG sites by using combined bisulfite restriction analysis (COBRA); five of the CpG sites reflected methylation levels similar to those detected by the microarray. One of the CpG sites was thought to reflect an age-related increase in methylation levels, which was confirmed by COBRA and bisulfite sequencing. However, the relationship between methylation status and IVF results could not be shown here. In conclusion, methylation profiles of individual and age-related alterations in bull spermatozoa can be revealed using a human microarray, and methylation changes in some CpG sites can be easily visualized using COBRA. Combined analysis of DNA methylation levels and sperm parameters could be considered an effective approach for assessing bull fertility in the future.


Subject(s)
CpG Islands , DNA Methylation , Spermatozoa/metabolism , Animals , Cattle , Humans , Male , Semen Analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL