Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Micromachines (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930658

ABSTRACT

Microelectromechanical system (MEMS) cantilever resonators suffer from high motional impedance (Rm). This paper investigates the use of mechanically coupled multi-cantilever piezoelectric MEMS resonators in the resolution of this issue. A double-sided actuating design, which utilizes a resonator with a 2.5 µm thick AlN film as the passive layer, is employed to reduce Rm. The results of experimental and finite element analysis (FEA) show agreement regarding single- to sextuple-cantilever resonators. Compared with a standalone cantilever resonator, the multi-cantilever resonator significantly reduces Rm; meanwhile, the high quality factor (Q) and effective electromechanical coupling coefficient (Kteff2) are maintained. The 30 µm wide quadruple-cantilever resonator achieves a resonance frequency (fs) of 55.8 kHz, a Q value of 10,300, and a series impedance (Rs) as low as 28.6 kΩ at a pressure of 0.02 Pa; meanwhile, the smaller size of this resonator compared to the existing multi-cantilever resonators is preserved. This represents a significant advancement in MEMS resonators for miniaturized ultra-low-power oscillator applications.

2.
Vet Res ; 55(1): 49, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594770

ABSTRACT

Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.


Subject(s)
Flavobacteriaceae Infections , Meningitis , Poultry Diseases , Riemerella , Animals , Blood-Brain Barrier/metabolism , Ducks/metabolism , Virulence , Virulence Factors/metabolism , Occludin/genetics , Occludin/metabolism , Flavobacteriaceae Infections/veterinary , Riemerella/metabolism , Meningitis/veterinary , Collagen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Mol Hortic ; 4(1): 3, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282004

ABSTRACT

Plant Myeloblastosis (MYB) proteins function crucially roles upon variegated abiotic stresses. Nonetheless, their effects and mechanisms in rose (Rosa chinensis) are not fully clarified. In this study, we characterized the effects of rose RcMYB8 under salt and drought tolerances. For induction of the RcMYB8 expression, NaCl and drought stress treatment were adopted. Rose plants overexpressing RcMYB8 displayed enhanced tolerance to salinity and drought stress, while silencing RcMYB8 resulted in decreased tolerance, as evidenced by lowered intra-leaf electrolyte leakage and callose deposition, as well as photosynthetic sustainment under stressed conditions. Here, we further show that RcMYB8 binds similarly to the promoters of RcPR5/1 and RcP5C51 in vivo and in vitro. Inhibiting RcP5CS1 by virus-induced gene silencing led to decreased drought tolerance through the reactive oxygen species (ROS) homeostatic regulation. RcP5CS1-silenced plants showed an increase in ion leakage and reduce of proline content, together with the content of malondialdehyde (MDA) increased, lowered activities of Catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Our study highlights the transcriptional modulator role of RcMYB8 in drought and salinity tolerances, which bridges RcPR5/1 and RcP5CS1 by promoting ROS scavenging. Besides, it is probably applicable to the rose plant engineering for enhancing their abiotic stress tolerances.

4.
Cancer Med ; 13(1): e6720, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38111983

ABSTRACT

BACKGROUND: Although adjuvant chemotherapy (ACT) is widely used to treat patients with Stage II/III colorectal cancer (CRC), administering ACT to specific patients remains a challenge. The decision to ACT requires an accurate assessment of recurrence risk and absolute treatment benefit. However, the traditional TNM staging system does not accurately assess a patient's individual risk of recurrence. METHODS: To identify recurrence risk-related genetic factors for Stage II/III CRC patients after radical surgery, we conducted an analysis of whole-exome sequencing of 47 patients with Stage II/III CRC who underwent radical surgery at five institutions. Patients were grouped into non-recurrence group (NR, n = 24, recurrence-free survival [RFS] > 5 years) and recurrence group (R, n = 23, RFS <2 years). The TCGA-COAD/READ cohort was employed as the validation dataset. RESULTS: A recurrence-predictive model (G8plus score) based on eight gene (CUL9, PCDHA12, HECTD3, DCX, SMARCA2, FAM193A, AATK, and SORCS2) mutations and tumor mutation burden/microsatellite instability (TMB/MSI) status was constructed, with 97.87% accuracy in our data and 100% negative predictive value in the TCGA-COAD/READ cohort. For the TCGA-COAD/READ cohort, the G8plus-high group had better RFS (HR = 0.22, p = 0.024); the G8plus-high tumors had significantly more infiltrated immune cell types, higher tertiary lymphoid structure signature scores, and higher immunological signature scores. The G8plus score was also a predict biomarker for immunotherapeutic in advanced CRC in the PUCH cohort. CONCLUSIONS: In conclusion, the G8plus score is a powerful biomarker for predicting the risk of recurrence in patients with stage II/III CRC. It can be used to stratify patients who benefit from ACT and immunotherapy.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Humans , Prognosis , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Neoplasm Staging , Biomarkers, Tumor/genetics
5.
Colorectal Dis ; 25(10): 2087-2092, 2023 10.
Article in English | MEDLINE | ID: mdl-37612783

ABSTRACT

AIM: The aim of this study was to investigate the efficacy of multiple perineal perforator flaps in repairing deep perineal defects after pelvic exenteration for locally advanced or recurrent rectal cancer. METHOD: We investigated the outcomes of eight patients whose repairs involved a novel method of using an internal pudendal artery perforator (IPAP) flap combined with an inferior gluteal artery perforator (IGAP) flap. RESULTS: There were four male and four female patients with a mean age of 56 years (36-72 years). Bilateral IPAP flaps combined with bilateral IGAP flaps were used in five patients, unilateral IPAP flaps combined with bilateral IGAP flaps were used in two patients and bilateral IPAP flaps were used in one patient. There were no functional limitations in daily activities during the 6-month follow-up period. CONCLUSION: Our study showed that using multiple perineal perforator flaps combined with lining repair is feasible for repairing deep perineal defects in patients who have undergone rectal cancer surgery that includes pelvic exenteration.


Subject(s)
Pelvic Exenteration , Perforator Flap , Plastic Surgery Procedures , Rectal Neoplasms , Humans , Male , Female , Middle Aged , Rectal Neoplasms/surgery , Perineum/surgery , Perforator Flap/surgery
6.
Korean J Physiol Pharmacol ; 27(4): 375-381, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37386835

ABSTRACT

Numerous studies have revealed the importance of tumor-derived exosomes in rectal cancer (RC). This study aims to explore the influence of tumor-derived exosomal integrin beta-1 (ITGB1) on lung fibroblasts in RC along with underlying mechanisms. Exosome morphology was observed using a transmission electron microscope. Protein levels of CD63, CD9, ITGB1, p-p65 and p65 were detected using Western blot. To determine ITGB1's mRNA expression, quantitative real-time polymerase chain reaction was used. Moreover, levels of interleukin (IL)-8, IL-1ß, and IL-6 in cell culture supernatant were measured via commercial ELISA kits. ITGB1 expression was increased in exosomes from RC cells. The ratio of p-p65/p65 as well as levels of interleukins in lung fibroblasts was raised by exosomes derived from RC cells, while was reduced after down-regulation of exosomal ITGB1. The increased ratio of p-p65/p65 as well as levels of pro-inflammatory cytokines caused by exosomes from RC cells was reversed by the addition of nuclear factor kappa B (NF-κB) inhibitor. We concluded that the knockdown of RC cells-derived exosomal ITGB1 repressed activation of lung fibroblasts and the NF-κB pathway in vitro.

7.
Sci Rep ; 13(1): 9674, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316553

ABSTRACT

Colorectal cancer (CRC) is ranked as one of the most common malignancies with a high death rate. It has been discovered that breviscapine can alter the progression and development of various cancers. Nevertheless, the function and mechanisms of breviscapine in CRC progression have not yet been described. The cell proliferation capacity of HCT116 and SW480 cells was assessed using the CCK-8 and EdU assays. Cell apoptosis was tested through flow cytometry, and cell migration and invasion were examined using the transwell assay. Moreover, protein expression was examined through a western blot. Tumor weight and volume were assessed using the nude mice in vivo assay, and the Ki-67 protein expression was verified through the IHC assay. This study discovered that an increased dose of breviscapine (0, 12.5, 25, 50, 100, 200, and 400 µM) gradually reduced cell proliferation and increased apoptosis in CRC. Additionally, breviscapine restricted the migration and invasion CRC cells. Moreover, it was revealed that breviscapine inactivated the PI3K/AKT pathway and inhibited CRC progression. Finally, an in vivo assay demonstrated that breviscapine restrained tumor growth in vivo. It affected the CRC cells' proliferation, migration, invasion, and apoptosis through the PI3K/AKT pathway. This discovery may offer new insights into CRC treatment.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Mice , Proto-Oncogene Proteins c-akt , Mice, Nude , Neoplastic Processes , Apoptosis , Cell Proliferation
8.
J Agric Food Chem ; 71(6): 2898-2913, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36728562

ABSTRACT

Fu brick tea theabrownin (FBTB) is a kind of biomacromolecule produced by oxidative polymerization of tea polyphenols. Although a variety of diseases can be alleviated by TB, its ability to treat ulcerative colitis (UC) is still worth exploring. A dextran sulfate sodium (DSS)-induced chronic UC mouse model was designed to first explore the alleviatory effect of FBTB on UC and its underlying mechanism by the sequencing of fecal 16S rRNA genes, metabolomics, and fecal microbiota transplantation (FMT). Administration of FBTB at 400 mg/kg bw in DSS-damaged mice could effectively reduce colonic damage and inflammation and improve colonic antioxidant capacity to relieve the UC-caused symptoms. FBTB could correct the disrupted gut microbiota caused by UC and contribute to the proliferation of Lactobacillus and Parasutterella. FMT in combination with antibiotic treatment showed that FBTB could elevate the levels of microbial tryptophan metabolites, including indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA), by selectively promoting the growth of Lactobacillus. Importantly, FBTB-elevated IAld and IAA could activate aromatic hydrocarbon receptors (AhRs) and enhance interleukin-22 production to repair the intestinal barrier. These findings demonstrated that FBTB alleviated UC mainly by targeting the gut microbiota involved in the AhR pathway for prophylactic and therapeutic treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , Colitis, Ulcerative/drug therapy , Colon , Dextran Sulfate/toxicity , Disease Models, Animal , Fluorouracil , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Tea , Tryptophan
9.
Vet Microbiol ; 280: 109700, 2023 May.
Article in English | MEDLINE | ID: mdl-36807978

ABSTRACT

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. We previously reported that the R. anatipestifer AS87_RS02625 is a secretory protein of the type IX secretion system (T9SS). In this study, R. anatipestifer T9SS protein AS87_RS02625 was determined to be a functional Endonuclease I (EndoI), which has DNase and RNase activities. Optimal temperature and pH of the recombinant R. anatipestifer EndoI (rEndoI) to cleave λDNA were determined as 55-60 °C and 7.5 respectively. The DNase activity of the rEndoI was dependent on the presence of divalent metal ions. Presence of Mg2+ at a concentration range of 7.5-15 mM in the rEndoI reaction buffer displayed the highest DNase activity. In addition, the rEndoI displayed RNase activity to cleave MS2-RNA (ssRNA), either in the absence or presence of divalent cations Mg2+, Mn2+, Ca2+, Zn2+ and Cu2+. The DNase activity of the rEndoI was significantly enhanced by Mg2+, Mn2+ and Ca2+ but not Zn2+ and Cu2+. Moreover, we indicated that R. anatipestifer EndoI functioned on the bacterial adherence, invasion, in vivo survival and inducing inflammatory cytokines. These results indicate that the R. anatipestifer T9SS protein AS87_RS02625 is a novel EndoI, displays endonuclease activity and plays an important role in bacterial virulence.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Virulence/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Deoxyribonuclease I/metabolism , Ducks/microbiology , Ribonucleases/metabolism , Poultry Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology
10.
J Transl Med ; 21(1): 63, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717891

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) detection following curative-intent surgery could directly reflect the presence of minimal residual disease, the ultimate cause of clinical recurrence. However, ctDNA is not postoperatively detected in ≥ 50% of patients with stage I-III colorectal cancer (CRC) who ultimately recur. Herein we sought to improve recurrence risk prediction by combining ctDNA with clinicopathological risk factors in stage I-III CRC. METHODS: Two independent cohorts, both consisting of early-stage CRC patients who underwent curative surgery, were included: (i) the discovery cohort (N = 124) with tumor tissues and postoperative plasmas for ctDNA determination; and (ii) the external validation cohort (N = 125) with available ctDNA results. In the discovery cohort, somatic variations in tumor tissues and plasmas were determined via a 733-gene and 127-gene next-generation sequencing panel, respectively. RESULTS: In the discovery cohort, 17 of 108 (15.7%) patients had detectable ctDNA. ctDNA-positive patients had a significantly high recurrence rate (76.5% vs. 16.5%, P < 0.001) and short recurrence-free survival (RFS; P < 0.001) versus ctDNA-negative patients. In addition to ctDNA status, the univariate Cox model identified pathologic stage, lymphovascular invasion, nerve invasion, and preoperative carcinoembryonic antigen level associated with RFS. We combined the ctDNA and clinicopathological risk factors (CTCP) to construct a model for recurrence prediction. A significantly higher recurrence rate (64.7% vs. 8.1%, P < 0.001) and worse RFS (P < 0.001) were seen in the high-risk patients classified by the CTCP model versus those in the low-risk patients. Receiver operating characteristic analysis demonstrated that the CTCP model outperformed ctDNA alone at recurrence prediction, which increased the sensitivity of 2 year RFS from 49.6% by ctDNA alone to 87.5%. Harrell's concordance index, calibration curve, and decision curve analysis also suggested that the CTCP model had good discrimination, consistency, and clinical utility. These results were reproduced in the validation cohort. CONCLUSION: Combining postoperative ctDNA and clinical risk may better predict recurrence than ctDNA alone for developing a personalized postoperative management strategy for CRC.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Humans , Circulating Tumor DNA/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Biomarkers, Tumor/genetics , ROC Curve , Risk Factors , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology
11.
Vet Microbiol ; 276: 109628, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36508857

ABSTRACT

Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.


Subject(s)
Poultry Diseases , Riemerella , Animals , Virulence/genetics , Poultry Diseases/microbiology , Ducks/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
J Agric Food Chem ; 70(51): 16164-16175, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36519185

ABSTRACT

Fu-brick tea (FBT) has attracted the attention of researchers because of its unique nutritional value, but it remains unknown whether Eurotium cristatum, the critical fungus from FBT, is responsible for the observed anti-colitis effects of FBT. Herein, the effects of E. cristatum on dextran sulfate sodium (DSS)-induced ulcerative colitis was first discussed. The results illustrated that the oral administration of E. cristatum inhibited DSS-induced colon damage. Microbiota analysis revealed that E. cristatum improved the intestinal homeostasis of colitis mice, especially increased the proportion of Lactobacillus, followed by an obvious increase in fecal short-chain fatty acids (SCFAs). Besides, E. cristatum markedly promoted tryptophan metabolism and increased the fecal contents of tryptophan metabolites in colitis mice. Furthermore, E. cristatum drastically increased the content of colonic IL-22 and the expression of tight-junction proteins. Conclusively, these results suggest that E. cristatum can resist colon damage and other implications of colitis by regulating the microbiota and enhancing tryptophan metabolism to strengthen intestinal barriers.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Mice , Animals , Tryptophan/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Colon/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Dextran Sulfate/metabolism , Mice, Inbred C57BL , Disease Models, Animal
13.
J Agric Food Chem ; 70(48): 15213-15224, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36413756

ABSTRACT

This study was designed to first verify the protective capacity of turmeric powder (TP) as a traditional cooking spice against dextran sulfate sodium (DSS)-induced intestinal inflammation and intestine microbiota imbalance. The DSS-induced mice were fed a standard rodent chow supplemented with or without TP (8%) for 37 days. The results indicated that the pathological phenotype, gut barrier disruption, and colon inflammation of DSS-induced mice were significantly improved through supplementation of TP. In addition, 16S rRNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated intestinal microbiota dysbiosis caused by DSS and particularly enhanced the abundances of probiotics correlated with tryptophan metabolism, such as Lactobacillus and Bifidobacterium, where the cecal tryptophan was metabolized to indole-3-propionic acid and indole-3-acetic acid. Consumption of TP markedly enhanced the expression levels of colonic aromatic hydrocarbon receptors and further increased the expressions of intestinal tight junction proteins and interleukin-22 in the colitis mice. Collectively, these findings manifest the protective actions of dietary TP consumption against ulcerative colitis via restoring the intestinal microbiota disorders, promoting microbial metabolism, and improving intestinal barrier damage.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Tryptophan , Curcuma , RNA, Ribosomal, 16S , Propionates
14.
Anal Chem ; 94(41): 14402-14409, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36197729

ABSTRACT

Interest is growing in the creation of wearable sweat sensors for continuous, low-cost, and noninvasive health diagnosis at the molecular level. The biofouling phenomenon leads to degradation of sweat sensors' performance over time, further limiting the successive monitoring of human health status. However, to date, the mechanism of sweat fouling is still unclear, with the inability to provide effective guidance on antifouling strategies. This study clarifies chemical compositions in sweat fouling and fouling distributions on the surface of sensors. Gold film electrodes were prepared on glass and poly(ethylene terephthalate) (PET) substrates and contaminated by human facial sweat (from eccrine sweat glands and apocrine sweat glands) and palm sweat (only from eccrine sweat glands). A scanning electron microscope (SEM), an optical microscope (OM), and an atomic force microscope (AFM) were employed to study the surface morphology of biofouling electrodes. The existence of sweat fouling was characterized by AFM adhesion force, a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectra (XPS). FTIR along with XPS was adopted to analyze the biofouling components, and differential reflectance spectroscopy (DRS) was undertaken to observe the distribution of biofouling on the surface of the electrodes. As a result, we found that neither skin cell pieces nor recognized protein adsorption is the dominant source of biofouling, but the lipids in sweat form an inhomogeneous fouling layer on the electrode surface to reduce the electrochemical reactivity of sensors. This study provides deeper insights into sweat biofouling components and distributions and points out the right direction for resolving the problem of limited continuity in wearable sweat sensors.


Subject(s)
Biofouling , Biofouling/prevention & control , Ethylenes , Gold , Humans , Lipids , Surface Properties , Sweat
15.
Appl Environ Microbiol ; 88(19): e0127622, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36106871

ABSTRACT

Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Deoxyribonucleases/metabolism , Ducks/microbiology , Edetic Acid , Endonucleases/genetics , Endonucleases/metabolism , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Poultry Diseases/microbiology , RNA/metabolism , Ribonucleases/metabolism , Riemerella/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
16.
Opt Lett ; 47(18): 4790-4793, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107091

ABSTRACT

We report on an all-optical ultrasonic detecting method based on differential interference. A linearly polarized probe beam is split into two closely separated ones with orthogonal polarization. After interacting with propagating ultrasonic waves in a coupling media, the split beams are recombined into one beam, with its polarization being changed into an elliptical one by the elastic-optical effect. The recombined beam is filtered by an analyzer and detected by a photodetector. The bandwidth and noise-equivalent pressure (NEP) of the acoustic detector are determined to be 107.4 MHz and 2.18 kPa, respectively. We also demonstrate its feasibility for photoacoustic microscopy (PAM) using agar-embedded phantoms.


Subject(s)
Photoacoustic Techniques , Ultrasonics , Acoustics , Agar , Microscopy/methods , Photoacoustic Techniques/methods
17.
J Bacteriol ; 204(7): e0007322, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35670588

ABSTRACT

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.


Subject(s)
Poultry Diseases , Riemerella , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ducks/metabolism , Ducks/microbiology , Peptide Hydrolases/metabolism , Poultry Diseases/microbiology , Riemerella/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
18.
Microsyst Nanoeng ; 8: 63, 2022.
Article in English | MEDLINE | ID: mdl-35711674

ABSTRACT

Eye blinking is closely related to human physiology and psychology. It is an effective method of communication among people and can be used in human-machine interactions. Existing blink monitoring methods include video-oculography, electro-oculograms and infrared oculography. However, these methods suffer from uncomfortable use, safety risks, limited reliability in strong light or dark environments, and infringed informational security. In this paper, we propose an ultrasound-based portable approach for eye-blinking activity monitoring. Low-power pulse-echo ultrasound featuring biosafety is transmitted and received by microelectromechanical system (MEMS) ultrasonic transducers seamlessly integrated on glasses. The size, weight and power consumption of the transducers are 2.5 mm by 2.5 mm, 23.3 mg and 71 µW, respectively, which provides better portability than conventional methods using wearable devices. Eye-blinking activities were characterized by open and closed eye states and validated by experiments on different volunteers. Finally, real-time eye-blinking monitoring was successfully demonstrated with a response time less than 1 ms. The proposed solution paves the way for ultrasound-based wearable eye-blinking monitoring and offers miniaturization, light weight, low power consumption, high informational security and biosafety.

19.
J Agric Food Chem ; 70(27): 8274-8287, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767631

ABSTRACT

The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tea
20.
Appl Environ Microbiol ; 88(11): e0240921, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35575548

ABSTRACT

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Bacitracin , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ducks/microbiology , Fibrinogen/metabolism , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary , Gelatin/metabolism , Poultry Diseases/microbiology , Riemerella/metabolism , Serine , Subtilisins/metabolism , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...