Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Rapid Commun Mass Spectrom ; : e9130, 2021 May 26.
Article En | MEDLINE | ID: mdl-34038603

RATIONALE: The protein kinase FGFR1 regulates cellular processes in human development. As over-activity of FGFR1 is implicated with cancer, effective inhibitors are in demand. Type I inhibitors, which bind to the active form of FGFR1, are less effective than type II inhibitors, which bind to the inactive form. Screening to distinguish between type I and type II inhibitors is required. METHODS: X-ray crystallography was used to indicate whether a range of potential inhibitors bind to the active or inactive FGFR1 kinase conformation. The binding affinity of each ligand to FGFR1 was measured using biochemical methods. Electrospray ionisation - ion mobility spectrometry - mass spectrometry (ESI-IMS-MS) in conjunction with collision-induced protein unfolding generated a conformational profile of each FGFR1-ligand complex. The results indicate that the protein's conformational profile depends on whether the inhibitor is type I or type II. RESULTS: X-ray crystallography confirmed which of the kinase inhibitors bind to the active or inactive form of FGFR1 kinase. Collision-induced unfolding combined with ESI-IMS-MS showed distinct differences in the FGFR1 folding landscape for type I and type II inhibitors. Biochemical studies indicated a similar range of FGFR1 affinities for both types of inhibitors, thus providing confidence that the conformational variations detected using ESI-IMS-MS can be interpretated unequivocally and that this is an effective screening method. CONCLUSIONS: A robust ESI-IMS-MS method has been implemented to distinguish between the binding mode of type I and type II inhibitors by monitoring the conformational unfolding profile of FGFR1. This rapid method requires low sample concentrations and could be used as a high-throughput screening technique for the characterisation of novel kinase inhibitors.

2.
Brief Bioinform ; 21(5): 1549-1567, 2020 09 25.
Article En | MEDLINE | ID: mdl-31626279

Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on antibody-based therapeutic development. Antibody-specific computational protocols currently benefit from an increasing volume of data provided by next generation sequencing and application to related drug modalities based on traditional antibodies, such as nanobodies. Here we present a structured overview of available databases, methods and emerging trends in computational antibody analysis and contextualize them towards the engineering of candidate antibody therapeutics.


Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Computational Biology/methods , Databases, Protein , Molecular Docking Simulation , Protein Conformation
3.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Article En | MEDLINE | ID: mdl-27020862

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Breast Neoplasms/drug therapy , Cinnamates/pharmacology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Indoles/pharmacology , Mutation/genetics , Administration, Oral , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/administration & dosage , Drug Evaluation, Preclinical , Estrogen Receptor Modulators/administration & dosage , Estrogen Receptor alpha/chemistry , Female , Humans , Indoles/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Protein Conformation , Rats , Tumor Cells, Cultured , Uterus/metabolism , Uterus/pathology , Xenograft Model Antitumor Assays
5.
Oncotarget ; 7(17): 24252-68, 2016 Apr 26.
Article En | MEDLINE | ID: mdl-26992226

Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some "hotspots" may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials.


Benzamides/pharmacology , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/pathology , Mutation , Neoplasms/genetics , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Humans , Mice , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation/drug effects , Signal Transduction/drug effects
6.
ACS Med Chem Lett ; 7(1): 94-9, 2016 Jan 14.
Article En | MEDLINE | ID: mdl-26819673

A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.

7.
J Med Chem ; 58(20): 8128-40, 2015 Oct 22.
Article En | MEDLINE | ID: mdl-26407012

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Antineoplastic Agents/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/pharmacology , Indoles/chemistry , Indoles/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Down-Regulation/drug effects , Drug Design , Female , Humans , Injections, Intramuscular , X-Ray Diffraction
8.
Nat Commun ; 6: 7877, 2015 Jul 23.
Article En | MEDLINE | ID: mdl-26203596

Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-ß4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.


Receptor, Fibroblast Growth Factor, Type 1/metabolism , Escherichia coli , Humans , Imidazoles , Kinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Pyridazines , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
9.
J Med Chem ; 58(8): 3522-33, 2015 Apr 23.
Article En | MEDLINE | ID: mdl-25790336

A novel estrogen receptor down-regulator, 7-hydroxycoumarin (5, SS5020), has been reported with antitumor effects against chemically induced mammary tumors. Here, we report on our own investigation of 7-hydroxycoumarins as potential selective estrogen receptor down-regulators, which led us to the discovery of potent down-regulating antagonists, such as 33. Subsequent optimization and removal of the 7-hydroxy group led to coumarin 59, which had increased potency and improved rat bioavailability relative to SS5020.


Estrogen Receptor alpha/metabolism , Umbelliferones/chemistry , Umbelliferones/pharmacology , Administration, Oral , Animals , Cell Line, Tumor , Coumarins/chemistry , Coumarins/pharmacokinetics , Coumarins/pharmacology , Down-Regulation/drug effects , Estrogen Receptor alpha/analysis , Humans , Molecular Docking Simulation , Rats , Umbelliferones/pharmacokinetics
10.
Structure ; 22(12): 1764-1774, 2014 Dec 02.
Article En | MEDLINE | ID: mdl-25465127

The fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases has been implicated in a wide variety of cancers. Despite a high level of sequence homology in the ATP-binding site, the majority of reported inhibitors are selective for the FGFR1-3 isoforms and display much reduced potency toward FGFR4, an exception being the Bcr-Abl inhibitor ponatinib. Here we present the crystal structure of the FGFR4 kinase domain and show that both FGFR1 and FGFR4 kinase domains in complex with ponatinib adopt a DFG-out activation loop conformation. Comparison with the structure of FGFR1 in complex with the candidate drug AZD4547, combined with kinetic characterization of the binding of ponatinib and AZD4547 to FGFR1 and FGFR4, sheds light on the observed differences in selectivity profiles and provides a rationale for developing FGFR4-selective inhibitors.


Benzamides/pharmacology , Imidazoles/pharmacology , Piperazines/pharmacology , Protein Isoforms/metabolism , Pyrazoles/pharmacology , Pyridazines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Cell Line , Escherichia coli , Ligands , Phosphorylation/drug effects , Protein Binding , Signal Transduction/drug effects
11.
ACS Med Chem Lett ; 5(2): 166-71, 2014 Feb 13.
Article En | MEDLINE | ID: mdl-24900792

The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.

12.
Biosci Rep ; 33(4)2013 Aug 23.
Article En | MEDLINE | ID: mdl-23863106

TNFα (tumour necrosis factor α) is an early mediator in the systemic inflammatory response to infection and is therefore a therapeutic target in sepsis. AZD9773 is an ovine-derived, polyclonal anti-TNFα Fab fragment derived from a pool of serum and currently being developed as a treatment for severe sepsis and septic shock. In the present study, we show that although AZD9773 has a modest affinity for TNFα in a binding assay, the Ki in a cell-based assay is approximately four orders of magnitude lower. We show using SEC (size exclusion chromatography) that the maximum size of the complex between AZD9773 and TNFα is consistent with approximately 12 Fabs binding to one TNFα trimer. A number of approaches were taken to map the epitopes recognized by AZD9773. These revealed that a number of different regions on TNFα are involved in binding to the polyclonal Fab. The data suggest that there are probably three epitopes per monomer that are responsible for most of the inhibition by AZD9773 and that all three can be occupied at the same time in the complex. We conclude that AZD9773 is clearly demonstrated to bind to multiple epitopes on TNFα and suggest that the polyclonal nature may account, at least in part, for the very high potency observed in cell-based assays.


Immunoglobulin Fab Fragments/chemistry , Tumor Necrosis Factor-alpha/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Cell Survival/drug effects , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/pharmacology , Mice , Molecular Sequence Data , Molecular Weight , Mutagenesis, Site-Directed , Protein Binding , Sheep, Domestic , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
13.
J Med Chem ; 55(11): 5003-12, 2012 Jun 14.
Article En | MEDLINE | ID: mdl-22612866

The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form.


Pyrazoles/chemistry , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Dimerization , Drug Design , Humans , Ligands , Mice , Mice, Knockout , Models, Molecular , Molecular Structure , Phosphorylation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship
14.
Trends Pharmacol Sci ; 33(5): 273-8, 2012 May.
Article En | MEDLINE | ID: mdl-22503441

One of the grand challenges in kinase drug discovery is the design of small-molecule inhibitors with selectivity profiles that will ultimately be efficacious in the clinic. Current medicinal chemistry strategies make heavy use of structural, biophysical and computational approaches to achieve this multi-faceted goal. Here we review structure-based approaches underlying the development of several molecules that are currently in clinical trials, including the cMet inhibitor ARQ197 and the Bcr-Abl inhibitor ponatinib. We highlight the challenge posed by the emergence of resistance mutants and discuss promising lead generation strategies to obtain selective inhibitors of protein and lipid kinases such as targeting of specific sites, the use of fragment-based approaches and new chemical probes based on metal complexes.


Protein Kinases/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Drug Design , Humans , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinases/metabolism
15.
J Med Chem ; 55(7): 3285-306, 2012 Apr 12.
Article En | MEDLINE | ID: mdl-22417091

Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.


L-Lactate Dehydrogenase/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Enzyme Assays , Humans , Isoenzymes/antagonists & inhibitors , Lactate Dehydrogenase 5 , Magnetic Resonance Spectroscopy , Malonates/chemical synthesis , Malonates/chemistry , Malonates/pharmacology , Models, Molecular , Molecular Structure , Niacinamide/chemistry , Oxamic Acid/analogs & derivatives , Oxamic Acid/chemical synthesis , Oxamic Acid/chemistry , Oxamic Acid/pharmacology , Protein Binding , Rats , Structure-Activity Relationship , Surface Plasmon Resonance
16.
J Med Chem ; 52(23): 7901-5, 2009 Dec 10.
Article En | MEDLINE | ID: mdl-19736928

A novel class of 4-pyridinoxy-2-anilinopyridine-based TGF-beta type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors is reported. The binding mode of this scaffold was successfully predicted by analyzing possible docked binding modes of literature inhibitors and novel synthetic ideas. Compounds such as 19 are potent ALK5 inhibitors with good physicochemical and pharmacokinetic properties and thus represent high quality leads for further optimization.


Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Animals , Catalytic Domain , Cell Line, Tumor , Drug Discovery , Humans , Inhibitory Concentration 50 , Kinetics , Male , Models, Molecular , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Structure-Activity Relationship
17.
J Med Chem ; 49(22): 6465-88, 2006 Nov 02.
Article En | MEDLINE | ID: mdl-17064066

Src family kinases (SFKs) are nonreceptor tyrosine kinases that are reported to be critical for cancer progression. We report here a novel subseries of C-5-substituted anilinoquinazolines that display high affinity and specificity for the tyrosine kinase domain of the c-Src and Abl enzymes. These compounds exhibit high selectivity for SFKs over a panel of recombinant protein kinases, excellent pharmacokinetics, and in vivo activity following oral dosing. N-(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine (AZD0530) inhibits c-Src and Abl enzymes at low nanomolar concentrations and is highly selective over a range of kinases. AZD0530 displays excellent pharmacokinetic parameters in animal preclinically and in man (t(1/2) = 40 h). AZD0530 is a potent inhibitor of tumor growth in a c-Src-transfected 3T3-fibroblast xenograft model in vivo and led to a significant increase in survival in a highly aggressive, orthotopic model of human pancreatic cancer when dosed orally once daily. AZD0530 is currently undergoing clinical evaluation in man.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzodioxoles/chemical synthesis , Benzodioxoles/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Quinazolines/chemical synthesis , Quinazolines/pharmacology , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/chemistry , 3T3 Cells , Animals , Antineoplastic Agents/pharmacokinetics , Benzodioxoles/pharmacokinetics , Cell Proliferation/drug effects , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Indicators and Reagents , Male , Mice , Mice, Nude , Models, Molecular , Neoplasm Invasiveness/prevention & control , Quinazolines/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship , Thermodynamics , Transplantation, Heterologous , src-Family Kinases/biosynthesis
18.
Biochemistry ; 44(50): 16475-90, 2005 Dec 20.
Article En | MEDLINE | ID: mdl-16342939

Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.


MAP Kinase Kinase 6/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Enzyme Activation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , MAP Kinase Kinase 6/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
19.
Bioorg Med Chem Lett ; 14(9): 2249-52, 2004 May 03.
Article En | MEDLINE | ID: mdl-15081018

Modification of imidazo[1,2-a]pyridine CDK inhibitors lead to identification of less lipophilic imidazo[1,2-b]pyridazine series of CDK inhibitors. Although several equivalent compounds from these two series have similar structure and show similar CDK activity, the SAR of the two series differs significantly. Protein inhibitor structure determination has confirmed differences in binding mode and given some understanding of these differences in SAR. Potent and selective imidazo[1,2-b]pyridazine inhibitors of CDK2 have been identified, which show >1 microM plasma levels following a 2mg/kg oral dose to mice.


Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Animals , Enzyme Inhibitors/blood , Enzyme Inhibitors/chemistry , Mice , Models, Molecular , Pyridazines/blood
20.
Mol Microbiol ; 51(4): 1003-14, 2004 Feb.
Article En | MEDLINE | ID: mdl-14763976

Inositol is utilized by Mycobacterium tuberculosis in the production of its major thiol and of essential cell wall lipoglycans. We have constructed a mutant lacking the gene encoding inositol-1-phosphate synthase (ino1), which catalyses the first committed step in inositol synthesis. This mutant is only viable in the presence of extremely high levels of inositol. Mutant bacteria cultured in inositol-free medium for four weeks showed a reduction in levels of mycothiol, but phosphatidylinositol mannoside, lipomannan and lipoarabinomannan levels were not altered. The ino1 mutant was attenuated in resting macrophages and in SCID mice. We used site-directed mutagenesis to alter four putative active site residues; all four alterations resulted in a loss of activity, and we demonstrated that a D310N mutation caused loss of the active site Zn2+ ion and a conformational change in the NAD+ cofactor.


Genes, Essential , Mycobacterium tuberculosis/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Cysteine , DNA Mutational Analysis , Disaccharides/analysis , Gene Deletion , Genes, Bacterial , Glycopeptides , Inositol/biosynthesis , Lipopolysaccharides/analysis , Macrophages/microbiology , Mice , Mice, SCID , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/pathogenicity , Myo-Inositol-1-Phosphate Synthase/chemistry , Phosphatidylinositols/analysis , Pyrazoles/analysis , Sulfhydryl Compounds/analysis , Tuberculosis/microbiology , Virulence/genetics
...