Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Adv ; 8(27): eabn6491, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35857457

ABSTRACT

Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.


Subject(s)
Antineoplastic Agents , Aspartate-Ammonia Ligase , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Antineoplastic Agents/therapeutic use , Asparaginase/therapeutic use , Asparagine/metabolism , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Cell Line, Tumor , Glutaminase/therapeutic use , Lymphoma, B-Cell/drug therapy , Mice , Tumor Microenvironment
2.
J Invest Dermatol ; 142(7): 1858-1868.e8, 2022 07.
Article in English | MEDLINE | ID: mdl-34896119

ABSTRACT

Pigmentation of the human skin is a complex process regulated by many genes. However, only a few have a profound impact on melanogenesis. Transcriptome analysis of pigmented skin compared with analysis of vitiligo skin devoid of melanocytes allowed us to unravel CLEC12B as a melanocytic gene. We showed that CLEC12B, a C-type lectin receptor, is highly expressed in melanocytes and that its expression is decreased in dark skin compared with that in white skin. CLEC12B directly recruits and activates SHP1 and SHP2 through its immunoreceptor tyrosine-based inhibitory motif domain and promotes CRE-binding protein degradation, leading to the downregulation of the downstream MITF pathway. CLEC12B ultimately controls melanin production and pigmentation in vitro and in a model of reconstructed human epidermis. The identification of CLEC12B in melanocytes shows that C-type lectin receptors exert function beyond immunity and inflammation. It also provides insights into the understanding of melanocyte biology and regulation of melanogenesis.


Subject(s)
Lectins, C-Type , Melanocytes , Receptors, Mitogen , Skin Pigmentation , Epidermis/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Melanins/metabolism , Melanocytes/metabolism , Receptors, Mitogen/metabolism , Skin/metabolism , Skin Pigmentation/genetics
3.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34360002

ABSTRACT

Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFß1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFß1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFß1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR ¼ miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFß axis, opening new avenues for the treatment of DMD.


Subject(s)
Fibroblast Growth Factor 2/genetics , MicroRNAs/genetics , Muscular Dystrophy, Duchenne/genetics , Myofibroblasts/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Stem Cells/metabolism , Transforming Growth Factor beta1/genetics , Adipocytes/metabolism , Adipocytes/pathology , Adipogenesis/genetics , Adolescent , Adult , Base Sequence , Cell Differentiation , Child , Female , Fibroblast Growth Factor 2/metabolism , Fibrosis , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , MicroRNAs/metabolism , Middle Aged , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myofibroblasts/pathology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Stem Cells/pathology , Transforming Growth Factor beta1/metabolism
4.
Oncogene ; 40(14): 2621, 2021 04.
Article in English | MEDLINE | ID: mdl-33686243

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.

5.
Commun Biol ; 4(1): 166, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547392

ABSTRACT

Polo-like kinase 1 (Plk1) expression is inversely correlated with survival advantages in many cancers. However, molecular mechanisms that underlie Plk1 expression are poorly understood. Here, we uncover a hypoxia-regulated mechanism of Plk1-mediated cancer metastasis and drug resistance. We demonstrated that a HIF-2-dependent regulatory pathway drives Plk1 expression in clear cell renal cell carcinoma (ccRCC). Mechanistically, HIF-2 transcriptionally targets the hypoxia response element of the Plk1 promoter. In ccRCC patients, high expression of Plk1 was correlated to poor disease-free survival and overall survival. Loss-of-function of Plk1 in vivo markedly attenuated ccRCC growth and metastasis. High Plk1 expression conferred a resistant phenotype of ccRCC to targeted therapeutics such as sunitinib, in vitro, in vivo, and in metastatic ccRCC patients. Importantly, high Plk1 expression was defined in a subpopulation of ccRCC patients that are refractory to current therapies. Hence, we propose a therapeutic paradigm for improving outcomes of ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Cell Cycle Proteins/physiology , Drug Resistance, Neoplasm/genetics , Kidney Neoplasms , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/physiology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cohort Studies , Embryo, Nonmammalian , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Mice, Nude , Neoplasm Metastasis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Up-Regulation/genetics , Zebrafish , Polo-Like Kinase 1
7.
Pigment Cell Melanoma Res ; 34(5): 978-983, 2021 09.
Article in English | MEDLINE | ID: mdl-33449414

ABSTRACT

Immune checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, up to 60% of treated patients do not respond to ICI and/or develop immune-related adverse events (irAEs). Currently, robust and reliable biomarker to predict response and/or occurrence of irAEs to ICI are missing. Herein, we wanted to explore whether germline variants (SNPs) could predict the clinical outcomes of melanoma patients treated with ICIs. We performed a whole exome sequencing using gDNA isolated from blood, from a discovery cohort of 57 patients with metastatic melanoma. The top associations were then tested in a validation cohort of 57 patients. Our work suggests that individual germline genetic variants have no or weak impact on the response to ICIs. Only, variants in IL1RL1 have a significant impact in treatment response. The role of IL1RL1 in the immune response against melanoma and as a theranostic marker warrants further investigations.


Subject(s)
Exons , Germ-Line Mutation , Immune Checkpoint Inhibitors/administration & dosage , Melanoma , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Interleukin-1 Type I/genetics , Adult , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Neoplasm Metastasis , Exome Sequencing
8.
Cell Death Differ ; 28(6): 1837-1848, 2021 06.
Article in English | MEDLINE | ID: mdl-33462405

ABSTRACT

Ubiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic/genetics , Melanoma/genetics , Muscle Proteins/metabolism , Proteomics/methods , SKP Cullin F-Box Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Melanoma/pathology , Mice , Mice, Nude , Transfection , Ubiquitination , Xenograft Model Antitumor Assays
9.
Cell Death Differ ; 28(6): 1990-2000, 2021 06.
Article in English | MEDLINE | ID: mdl-33462406

ABSTRACT

Intratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level. We identify distinct transcriptional cell states and diverse tumor-associated populations in a subset of the samples. We also decipher a gene regulatory network underlying an invasive and poor prognosis state driven in part by the transcription factor HES6. HES6 heterogenous expression has been validated by RNAscope assays within primary human uveal melanomas, which further unveils the existence of these cells conveying a dismal prognosis in tumors diagnosed with a favorable outcome using bulk analyses. Depletion of HES6 impairs proliferation, migration and metastatic dissemination in vitro and in vivo using the chick chorioallantoic membrane assay, demonstrating the essential role of HES6 in uveal melanomas. Thus, single-cell analysis offers an unprecedented view of primary uveal melanoma heterogeneity, identifies bona fide biomarkers for metastatic cells in the primary tumor, and reveals targetable modules driving growth and metastasis formation. Significantly, our findings demonstrate that HES6 is a valid target to stop uveal melanoma progression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Melanoma/genetics , Repressor Proteins/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Uveal Neoplasms/genetics , Cell Line, Tumor , Humans , Neoplasm Metastasis , Prognosis
10.
Mol Cancer ; 20(1): 12, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413419

ABSTRACT

Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Subject(s)
Carcinogenesis/pathology , Cytotoxicity, Immunologic , Immunologic Factors/metabolism , Integrin beta1/metabolism , Killer Cells, Natural/immunology , Melanoma/immunology , Animals , Cell Line, Tumor , Cell Proliferation , Melanoma/pathology , Mice, Inbred C57BL , Microphthalmia-Associated Transcription Factor/metabolism
11.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Article in English | MEDLINE | ID: mdl-33075093

ABSTRACT

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Subject(s)
Mammary Neoplasms, Animal/metabolism , Oncolytic Virotherapy/methods , Transcription Factors/metabolism , Transcriptome , Vaccinia virus/genetics , Vaccinia/metabolism , Virus Replication , Animals , Computational Biology , Dogs , Female , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/therapy , Mammary Neoplasms, Animal/virology , Single-Cell Analysis , Transcription Factors/genetics , Vaccinia/genetics , Vaccinia/virology
12.
Theranostics ; 10(6): 2696-2713, 2020.
Article in English | MEDLINE | ID: mdl-32194829

ABSTRACT

Rationale: Renal cell carcinoma (RCC) accounts for about 2% of all adult cancers, and clear cell RCC (ccRCC) is the most common RCC histologic subtype. A hallmark of ccRCC is the loss of the primary cilium, a cellular antenna that senses a wide variety of signals. Loss of this key organelle in ccRCC is associated with the loss of the von Hippel-Lindau protein (VHL). However, not all mechanisms of ciliopathy have been clearly elucidated. Methods: By using RCC4 renal cancer cells and patient samples, we examined the regulation of ciliogenesis via the presence or absence of the hypoxic form of the voltage-dependent anion channel (VDAC1-ΔC) and its impact on tumor aggressiveness. Three independent cohorts were analyzed. Cohort A was from PREDIR and included 12 patients with hereditary pVHL mutations and 22 sporadic patients presenting tumors with wild-type pVHL or mutated pVHL; Cohort B included tissue samples from 43 patients with non-metastatic ccRCC who had undergone surgery; and Cohort C was composed of 375 non-metastatic ccRCC tumor samples from The Cancer Genome Atlas (TCGA) and was used for validation. The presence of VDAC1-ΔC and legumain was determined by immunoblot. Transcriptional regulation of IFT20/GLI1 expression was evaluated by qPCR. Ciliogenesis was detected using both mouse anti-acetylated α-tubulin and rabbit polyclonal ARL13B antibodies for immunofluorescence. Results: Our study defines, for the first time, a group of ccRCC patients in which the hypoxia-cleaved form of VDAC1 (VDAC1-ΔC) induces resorption of the primary cilium in a Hypoxia-Inducible Factor-1 (HIF-1)-dependent manner. An additional novel group, in which the primary cilium is re-expressed or maintained, lacked VDAC1-ΔC yet maintained glycolysis, a signature of epithelial-mesenchymal transition (EMT) and more aggressive tumor progression, but was independent to VHL. Moreover, these patients were less sensitive to sunitinib, the first-line treatment for ccRCC, but were potentially suitable for immunotherapy, as indicated by the immunophenoscore and the presence of PDL1 expression. Conclusion: This study provides a new way to classify ccRCC patients and proposes potential therapeutic targets linked to metabolism and immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Cilia , Kidney Neoplasms , Voltage-Dependent Anion Channel 1/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cilia/metabolism , Cilia/pathology , Cohort Studies , Epithelial-Mesenchymal Transition , Female , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Middle Aged , Young Adult
13.
Oncogene ; 38(46): 7146-7165, 2019 11.
Article in English | MEDLINE | ID: mdl-31417181

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


Subject(s)
Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Oxidative Stress/physiology , RNA, Long Noncoding/physiology , Adenocarcinoma of Lung/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/metabolism , Phenotype
14.
Cancer Res ; 79(13): 3268-3280, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31064849

ABSTRACT

Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation of the polyamine biosynthesis pathway. Mechanistically, PGC1α inhibits the expression of c-MYC and ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme for polyamine synthesis. Analysis of in vivo metastases and clinical data from patients with prostate cancer support the proposition that the PGC1α/c-MYC/ODC1 axis regulates polyamine biosynthesis and prostate cancer aggressiveness. In conclusion, downregulation of PGC1α renders prostate cancer cells dependent on polyamine to promote metastasis. SIGNIFICANCE: These findings show that a major regulator of mitochondrial metabolism controls polyamine synthesis and prostate cancer aggressiveness, with potential applications in therapy and identification of new biomarkers.


Subject(s)
Biomarkers, Tumor/metabolism , Dicarboxylic Acid Transporters/metabolism , Gene Expression Regulation, Neoplastic , Mitochondrial Membrane Transport Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Polyamines/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Dicarboxylic Acid Transporters/genetics , Follow-Up Studies , Humans , Male , Mice , Mice, Nude , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/genetics , Neoplasm Metastasis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
Am J Respir Crit Care Med ; 200(2): 184-198, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30964696

ABSTRACT

Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.


Subject(s)
Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/metabolism , Animals , Caveolin 1/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Mice , MicroRNAs/metabolism , Myofibroblasts/metabolism , Signal Transduction , Smad Proteins/metabolism , Wnt Signaling Pathway
16.
Cell Mol Life Sci ; 76(14): 2817-2832, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30887098

ABSTRACT

The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased ß-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-ß-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-ß-catenin signaling axis controls pneumocyte maturation.


Subject(s)
Alveolar Epithelial Cells/cytology , Cell Lineage , Lung/growth & development , MicroRNAs/genetics , Organogenesis , Respiratory Mucosa/cytology , Alveolar Epithelial Cells/metabolism , Animals , Cells, Cultured , Mice , Mice, Knockout , MicroRNAs/metabolism , Respiratory Mucosa/physiology
17.
Oncogene ; 38(8): 1282-1295, 2019 02.
Article in English | MEDLINE | ID: mdl-30254208

ABSTRACT

Phenotypic plasticity and subsequent generation of intratumoral heterogeneity underly key traits in malignant melanoma such as drug resistance and metastasis. Melanoma plasticity promotes a switch between proliferative and invasive phenotypes characterized by different transcriptional programs of which MITF is a critical regulator. Here, we show that the acid ceramidase ASAH1, which controls sphingolipid metabolism, acted as a rheostat of the phenotypic switch in melanoma cells. Low ASAH1 expression was associated with an invasive behavior mediated by activation of the integrin alphavbeta5-FAK signaling cascade. In line with that, human melanoma biopsies revealed heterogeneous staining of ASAH1 and low ASAH1 expression at the melanoma invasive front. We also identified ASAH1 as a new target of MITF, thereby involving MITF in the regulation of sphingolipid metabolism. Together, our findings provide new cues to the mechanisms underlying the phenotypic plasticity of melanoma cells and identify new anti-metastatic targets.


Subject(s)
Acid Ceramidase/genetics , Cell Proliferation/genetics , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , Cell Line, Tumor , Female , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/pathology , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins B-raf , Receptors, Vitronectin/genetics , Signal Transduction
18.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727617

ABSTRACT

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Subject(s)
DNA Replication/genetics , Genome/genetics , Heterochromatin/genetics , Telomere/genetics , Telomeric Repeat Binding Protein 2/genetics , Cell Line, Tumor , Centromere/genetics , Chromatin/genetics , DNA Helicases/genetics , G-Quadruplexes , HeLa Cells , Humans , S Phase/genetics
20.
Cell Death Differ ; 25(11): 2010-2022, 2018 11.
Article in English | MEDLINE | ID: mdl-29515254

ABSTRACT

HACE1 is an E3 ubiquitin ligase described as a tumour suppressor because HACE1-knockout mice develop multi-organ, late-onset cancers and because HACE1 expression is lost in several neoplasms, such as Wilms' tumours and colorectal cancer. However, a search of public databases indicated that HACE1 expression is maintained in melanomas. We demonstrated that HACE1 promoted melanoma cell migration and adhesion in vitro and was required for mouse lung colonisation by melanoma cells in vivo. Transcriptomic analysis of HACE1-depleted melanoma cells revealed an inhibition of ITGAV and ITGB1 as well changes in other genes involved in cell migration. We revealed that HACE1 promoted the K27 ubiquitination of fibronectin and regulated its secretion. Secreted fibronectin regulated ITGAV and ITGB1 expression, as well as melanoma cell adhesion and migration. Our findings disclose a novel molecular cascade involved in the regulation of fibronectin secretion, integrin expression and melanoma cell adhesion. By controlling this cascade, HACE1 displays pro-tumoural properties and is an important regulator of melanoma cell invasive properties.


Subject(s)
Ubiquitin-Protein Ligases/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement , Fibronectins/metabolism , Humans , Integrins/genetics , Integrins/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , RNA Interference , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitination , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...