Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Hematol Oncol ; 16(1): 117, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087365

ABSTRACT

BACKGROUND: T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA). METHODS: We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). RESULTS: NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM. FcγR-binding is abrogated by the "LALAPA" mutation (Leu234Ala, Leu235Ala, Pro329Ala). NILK-2301 induced T-cell activation, proliferation, cytokine release, and T-cell dependent cellular cytotoxicity of CEACAM5-positive tumor cell lines (5/5 colorectal, 2/2 gastric, 2/2 lung), e.g., SK-CO-1 (Emax = 89%), MKN-45 (Emax = 84%), and H2122 (Emax = 97%), with EC50 ranging from 0.02 to 0.14 nM. NILK-2301 binds neither to CEACAM5-negative or primary colon epithelial cells nor to other CEACAM family members. NILK-2301 alone or in combination with checkpoint inhibition showed activity in organotypic tumor tissue slices and colorectal cancer organoid models. In vivo, NILK-2301 at 10 mg/kg significantly delayed tumor progression in colon- and a pancreatic adenocarcinoma model. Single-dose pharmacokinetics (PK) and tolerability in cynomolgus monkeys at 0.5 or 10 mg/kg intravenously or 20 mg subcutaneously showed dose-proportional PK, bioavailability ≈100%, and a projected half-life in humans of 13.1 days. NILK-2301 was well-tolerated. Data were confirmed in human FcRn TG32 mice. CONCLUSIONS: In summary, NILK-2301 combines promising preclinical activity and safety with lower probability of ADA-generation due to its format compared to other molecules and is scheduled to enter clinical testing at the end of 2023.


Subject(s)
Adenocarcinoma , Antibodies, Bispecific , Pancreatic Neoplasms , Humans , Animals , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Adenocarcinoma/drug therapy , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Immunotherapy , CD3 Complex , Carcinoembryonic Antigen , GPI-Linked Proteins
2.
Eur J Immunol ; 51(8): 2074-2085, 2021 08.
Article in English | MEDLINE | ID: mdl-33945643

ABSTRACT

The aberrant release of inflammatory mediators often referred to as a cytokine storm or cytokine release syndrome (CRS), is a common and sometimes fatal complication in acute infectious diseases including Ebola, dengue, COVID-19, and influenza. Fatal CRS occurrences have also plagued the development of highly promising cancer therapies based on T-cell engagers and chimeric antigen receptor (CAR) T cells. CRS is intimately linked with dysregulated and excessive cytokine release, including IFN-γ, TNF-α, IL 1, IL-6, and IL-10, resulting in a systemic inflammatory response leading to multiple organ failure. Here, we show that mice intravenously administered the agonistic hamster anti-mouse CD3ε monoclonal antibody 145-2C11 develop clinical and laboratory manifestations seen in patients afflicted with CRS, including body weight loss, hepatosplenomegaly, thrombocytopenia, increased vascular permeability, lung inflammation, and hypercytokinemia. Blood cytokine levels and gene expression analysis from lung, liver, and spleen demonstrated a hierarchy of inflammatory cytokine production and infiltrating immune cells with differentiating organ-dependent kinetics. IL-2, IFN-γ, TNF-α, and IL-6 up-regulation preceded clinical signs of CRS. The co-treatment of mice with a neutralizing anti-cytokine antibody cocktail transiently improved early clinical and laboratory features of CRS. We discuss the predictive use of this model in the context of new anti-cytokine strategies to treat human CRS.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies/immunology , CD3 Complex/antagonists & inhibitors , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Animals , Antibodies/adverse effects , Antibodies, Monoclonal/therapeutic use , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokines/blood , Disease Models, Animal , Drug Therapy, Combination , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Mice , Phenotype , Severity of Illness Index , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL