Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Open Vet J ; 14(8): 2007-2015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39308722

ABSTRACT

Background: Malaria remains a significant global health burden, with drug resistance posing a major challenge to its control. The emergence of resistance to antimalarial drugs represents a critical issue in malaria management, as it heightens the likelihood of morbidity and mortality associated with the disease. There is an urgent requirement for a novel candidate drug with a distinct mechanism of action. Aim: In light of the ongoing challenges in malaria management, particularly the emergence of drug resistance, this study aimed to investigate the efficacy of a novel combination therapy of borrelidin and fumagilin against Plasmodium berghei infection on Swiss Webster mice. The findings of this study could contribute to developing new and effective antimalarial treatments. Methods: This study employed a unique approach, using Swiss Webster mice aged 6-8 weeks and dividing them into five groups, each with five mice. The therapeutic efficacy of the combination treatment was evaluated through a comprehensive assessment of parasitemia levels, survival rates, and histological changes in the liver and spleen. This rigorous methodology ensures the reliability and validity of our findings. Results: The combination of borrelidin and fumagilin led to the lowest parasitemia at 5%, contrasting with the control group reaching 15%. Moreover, the combination group exhibited the highest inhibition rate of 69.6% on day nine post-infection. Histopathological alterations were limited to sinusoid dilation, hepatocyte ballooning, and the presence of hemozoin. Conclusion: These findings suggest that the combination of borrelidin and fumagilin holds promise as a potential antimalarial therapy.


Subject(s)
Antimalarials , Malaria , Plasmodium berghei , Animals , Plasmodium berghei/drug effects , Mice , Malaria/drug therapy , Malaria/veterinary , Malaria/parasitology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Drug Therapy, Combination , Parasitemia/drug therapy , Female , Fatty Alcohols
2.
ACS Omega ; 9(34): 36795-36801, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220484

ABSTRACT

Amantamides are lipopeptides that act as selective CXC chemokine receptor 7 agonists and modulate spontaneous calcium oscillations in primary cultured neocortical neurons. We isolated a new analog of amantamides, amantamide C, from marine Okeania sp. cyanobacterium collected in Japan and established its structure based on NMR and MS/MS analyses, and degradation reactions. In addition, we evaluated the biological activity of amantamide C and revealed novel biological features of amantamide-type compounds.

3.
mSphere ; 9(9): e0034724, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39189775

ABSTRACT

Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.IMPORTANCEFAD is important for all forms of life, yet its role and metabolism are still poorly studied in E. histolytica, the protozoan parasite causing human amebiasis. Our study uncovers the evolutionary unique key enzyme, archaeal-type FADS for FAD biosynthesis from E. histolytica for the first time. Additionally, we showed the essentiality of this enzyme for parasite survival, highlighting its potential as target for drug development against E. histolytica infections.


Subject(s)
Archaea , Entamoeba histolytica , Flavin-Adenine Dinucleotide , Phylogeny , Entamoeba histolytica/genetics , Entamoeba histolytica/enzymology , Entamoeba histolytica/drug effects , Flavin-Adenine Dinucleotide/metabolism , Archaea/genetics , Archaea/enzymology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Kinetics , Antiprotozoal Agents/pharmacology , Humans , Nucleotidyltransferases
4.
Heliyon ; 10(15): e35648, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170210

ABSTRACT

Tuberculosis (TB) is the foremost cause of infectious fatality globally. The primary global challenge in combatting TB lies in addressing the emergence of drug-resistant variants of the disease. However, the number of newly approved agents for treating TB has remained remarkably low over recent decades. Hence, research endeavors for discovering novel anti-TB agents are always needed. In the present study, we screened over 1,500 culture extracts from actinomycetes isolated in Indonesia for their inhibitory activity against Mycobacterium smegmatis used as a surrogate in the primary screening. The initial screening yielded approximately 6.2 % hit extracts, with a selection criterion of >80 % growth inhibition. The confirmed hit extracts were subsequently subjected to growth inhibition assay against Mycobacterium bovis and Mycobacterium tuberculosis. Approximately 20 % of the hit extracts that showed growth inhibition also exhibited efficacy against M. bovis BCG and M. tuberculosis H37Rv pathogenic strain. An active compound was successfully purified from a large-scale culture of the most potent representative extract by high-performance liquid chromatography and thin-layer chromatography. The structure of the active compound was elucidated by mass spectrometry and nuclear magnetic resonance. This compound displayed structural similarities to actinomycin group and exhibited robust inhibition, with IC50 values of 0.74, 0.02, and 0.07 µg/mL against M. smegmatis, M. bovis, and M. tuberculosis, respectively. The Actinomycetes strain A612, which produced the active compound, was taxonomically classified by phylogenetic analysis of 16s rRNA gene and whole genome sequencing data as Streptomyces parvus. Computational genome analysis utilizing anti-SMASH 7.0 unveiled that S. parvus A612 strain harbors 40 biosynthetic gene clusters with the potential to produce 16 known (with >70 % similarity) and 24 unknown compounds. A non-ribosomal peptide synthesis (NRPS) gene cluster associated with actinomycin D biosynthesis was also identified, boasting an 85 % similarity. Molecular docking analysis of actinomycin D and 21 potential M. tuberculosis targets revealed possible interactions with multiple targets. The purified active compound inhibited recombinant M. tuberculosis shikimate kinase (MtSK), which validated the results obtained from the docking analysis.

5.
J Nat Prod ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145689

ABSTRACT

Pemuchiamides A and B (1 and 2) were isolated from a marine Hormoscilla sp. cyanobacterium collected from Pemuchi Beach on Hateruma Island, Japan. Although 1 and 2 existed as a complex mixture of rotamers in chloroform-d, detailed analyses of their 2D NMR and tandem mass spectra revealed their planar structures, respectively. The absolute configurations of 1 and 2 were established via the degradation and derivatization reactions. Pemuchiamide A (1) exhibited potent growth-inhibitory activity against Trypanosoma brucei rhodesiense, the causative organism of African sleeping sickness, while 2 showed 10-fold weaker activity than 1. This result indicates that the presence of a hydroxy group at the C-3 position of the 4-aminobutanoic acid moiety negatively affects antitrypanosomal activity.

6.
Parasitol Int ; 103: 102925, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39048023

ABSTRACT

Presenilins (PSNs) are multifunctional membrane proteins involved in signal transduction, lysosomal acidification, and certain physiological processes related to mitochondria. The aspartic protease activity of PSN and the formation of a γ-secretase complex with other subunits such as nicastrin (NCT) are required for the biological functions. Although PSN is widely conserved in eukaryotes, most studies on PSN were conducted in metazoans. Homologous genes for PSN and NCT (EhPSN and EhNCT, respectively) are encoded in the genome of Entamoeba histolytica, however, their functions remain unknown. In this study, we showed that EhPSN and EhNCT form a complex on the cell membrane, demonstrating that the parasite possesses γ-secretase. The predicted structure of EhPSN was similar to the human homolog, demonstrated by the crystal structure, and phylogenetic analysis indicated good conservation between EhPSN and human PSN, supporting the premise that EhPSN functions as a subunit of γ-secretase. By contrast, EhNCT appears to have undergone remarkable structural changes during its evolution. Blue native-polyacrylamide gel electrophoresis combined with western blotting indicated that a 150-kDa single band contains both EhPSN (estimated molecular size: 47-kDa) and EhNCT (64-kDa), suggesting that the complex also contains other unknown components or post-translational modifications. Coimmunoprecipitation from amebic lysates also confirmed that EhPSN and EhNCT formed a complex. Indirect immunofluorescence analysis revealed that the complex localized to the plasma membrane. Moreover, EhPSN exhibited protease activity, which was suppressed by a γ-secretase inhibitor. This is the first report of a γ-secretase complex in protozoan parasites.


Subject(s)
Amyloid Precursor Protein Secretases , Entamoeba histolytica , Proteolysis , Protozoan Proteins , Entamoeba histolytica/genetics , Entamoeba histolytica/enzymology , Entamoeba histolytica/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Cell Membrane/metabolism , Phylogeny , Humans
7.
J Nat Prod ; 87(7): 1838-1843, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39021085

ABSTRACT

Here, we report wajeepeptin (1), a new cyclic depsipeptide isolated from a marine Moorena sp. cyanobacterium. The structure was elucidated by a combination of spectroscopic analyses, X-ray diffraction analysis, and degradation reactions. Wajeepeptin (1) showed moderate cytotoxicity (IC50 = 3.7 µM against HeLa cells) and potent antitrypanosomal activity (IC50 = 0.73 ± 0.14 µM against Trypanosoma brucei rhodesiense).


Subject(s)
Cyanobacteria , Depsipeptides , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Humans , Molecular Structure , HeLa Cells , Cyanobacteria/chemistry , Trypanosoma brucei rhodesiense/drug effects , Marine Biology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Drug Screening Assays, Antitumor , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular
8.
Exp Parasitol ; 262: 108773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723845

ABSTRACT

Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 µM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.


Subject(s)
Antiprotozoal Agents , Cell Cycle Checkpoints , DNA Damage , Diterpenes , Giardia lamblia , Inhibitory Concentration 50 , Reactive Oxygen Species , Trophozoites , Diterpenes/pharmacology , Giardia lamblia/drug effects , Giardia lamblia/growth & development , Giardia lamblia/genetics , Trophozoites/drug effects , Trophozoites/growth & development , Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Antiprotozoal Agents/pharmacology , Humans , Animals , Gene Expression/drug effects , Metronidazole/pharmacology
9.
Parasitology ; 151(4): 429-439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571301

ABSTRACT

Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1­M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.


Subject(s)
Entamoeba , Multilocus Sequence Typing , Genetic Markers , Entamoeba/genetics , Entamoeba/classification , Entamoeba/isolation & purification , Humans , Entamoebiasis/parasitology , Entamoebiasis/epidemiology , Genotype , Polymorphism, Single Nucleotide , Genetic Variation , Phylogeny
10.
Beilstein J Org Chem ; 20: 645-652, 2024.
Article in English | MEDLINE | ID: mdl-38533471

ABSTRACT

Polycavernoside E (1), a new polycavernoside analog, was isolated from a marine Okeania sp. cyanobacterium. The relative configuration was elucidated primarily by analyzing the two dimensional nuclear magnetism resonance (2D NMR) data. The absolute configuration was clarified by comparing the electronic circular dichroism (ECD) data of 1 with those of known analogs. Polycavernoside E (1) exhibited moderate antitrypanosomal activity against Trypanosoma brucei rhodesiense. Furthermore, the isolation of polycavernoside E (1) from marine cyanobacteria provides additional evidence that marine cyanobacteria, and not red algae, are responsible for the biosynthesis of polycavernosides.

11.
J Nat Prod ; 87(4): 1116-1123, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38381613

ABSTRACT

Kagimminols A (1) and B (2), new cembrene-type diterpenoids, were isolated from an Okeania sp. marine cyanobacterium. By combining DP4 analysis with an efficient NMR chemical shift calculation protocol, we clarified the relative configurations of 1 and 2 without consuming precious natural products. We determined the absolute configurations by a comparison of theoretical electronic circular dichroism (ECD) spectra with experimental spectra, and the absolute configuration of 1 was verified experimentally. Finally, we found that 1 and 2 showed selective growth-inhibitory activity against the causative agent of human African trypanosomiasis. This study exemplifies that computational chemistry is an efficient tool for clarifying the configurations of natural products possessing tautomers in equilibrium.


Subject(s)
Cyanobacteria , Diterpenes , Humans , Circular Dichroism , Cyanobacteria/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
12.
Parasitol Int ; 100: 102861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244854

ABSTRACT

Amoebiasis, caused by the enteric parasite, Entamoeba histolytica, is one of the major food- and water-borne parasitic diseases in developing countries with improper sanitation and poor hygiene. Infection with E. histolytica has diverse disease outcomes, which are determined by the genetic diversity of the infecting strains. Comparative genetic analysis of infecting E. histolytica strains associated with differential disease outcomes from different geographical regions of the world is important to identify the specific genetic patterns of the pathogen that trigger certain disease outcomes of Amoebiasis. The strategy is able to elucidate the genealogical relation and population structure of infecting E. histolytica strains from different geographical regions. In the present study, we have performed a comparative genetic analysis of circulating E. histolytica strains identified from different parts of the world, including our study region, based on five tRNA-linked short tandem repeat (STR) loci (i.e., D-A, NK2, R-R, STGA-D and A-L) and evaluated their potential associations with differential disease outcomes of Amoebiasis. A number of regional-specific, emerging haplotypes of E. histolytica, significantly associated with specific disease outcomes have been identified. Haplotypes, which have a significant positive association with asymptomatic and amoebic liver abscess outcomes, showed a significant negative association with diarrheal outcome, or vice versa. Comparative multi-locus analysis revealed that E. histolytica isolates from our study region are phylogenetically segregated from the isolates of other geographical regions. This study provides a crucial overview of the population structure and emerging pattern of the enteric parasite, E. histolytica.


Subject(s)
Amebiasis , Dysentery, Amebic , Entamoeba histolytica , Entamoeba , Entamoebiasis , Liver Abscess, Amebic , Animals , Entamoeba histolytica/genetics , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Liver Abscess, Amebic/parasitology , Dysentery, Amebic/parasitology , Sequence Analysis , Entamoeba/genetics
13.
Parasitol Int ; 99: 102846, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110172

ABSTRACT

Amoebiasis, caused by the enteric parasite Entamoeba histolytica has differential disease outcomes. The association of parasite genotypes with outcomes of amoebic infection is still a paradox and requires to be explored. The genetic information of infecting strains from endemic settings of different geographical regions is essential to evaluate the relation. Comparative genetics of E. histolytica clinical isolates from different disease outcomes have been explored based on two tRNA-linked STR loci (STGA-D and A-L). All of the repeat patterns in the A-L locus were newly identified and unique to Indian isolates. The majority of newly identified repeat patterns in STGA-D locus have outcome-specific distributions, predicting the emergence of disease-specific mutations in this target locus. Statistical analysis further reinforces this observation, as identified repeat patterns only from STGA-D but not A-L locus were significantly associated with disease outcomes. Phylogenetic analysis indicates independent segregation and divergence of tRNA-linked STR arrays for each STR locus.


Subject(s)
Entamoeba histolytica , Entamoeba , Entamoebiasis , Animals , Entamoeba histolytica/genetics , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Genetic Markers , Phylogeny , Microsatellite Repeats , RNA, Transfer/genetics , Entamoeba/genetics
14.
J Nat Prod ; 86(11): 2529-2538, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37945375

ABSTRACT

Akunolides A (1), B (2), C (3), and D (4), new macrolide glycosides, were isolated from a marine Okeania sp. cyanobacterium. Their structures were elucidated by spectroscopic analyses and derivatization reactions. Akunolides A-D (1-4) are classified as 16-membered macrolide glycosides, which are relatively rare structures for marine cyanobacterium-derived natural products. Akunolides A-D (1-4) showed moderate antitrypanosomal activities against Trypanosoma brucei rhodesiense, with IC50 values ranging from 11 to 14 µM. Furthermore, akunolides A (1) and C (3) exhibited no cytotoxicity against normal human WI-38 cells even at a concentration of 150 µM.


Subject(s)
Cyanobacteria , Macrolides , Humans , Macrolides/chemistry , Glycosides/chemistry , Cyanobacteria/chemistry , Cell Line , Molecular Structure
15.
Antimicrob Agents Chemother ; 67(11): e0056023, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37874291

ABSTRACT

Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.


Subject(s)
Amebiasis , Entamoeba histolytica , Parasites , Animals , Humans , Entamoeba histolytica/genetics , Amebiasis/drug therapy , Polyesters
16.
Parasitol Res ; 122(11): 2567-2584, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37682345

ABSTRACT

The prevalence and genetic diversity of the protozoan pathogen Giardia duodenalis have been extensively studied worldwide. There is currently a lack of data regarding the genetic variability of the organism in eastern India. Understanding the circulating genotypes and associated risk factors is crucial for effective planning and implementing control measures. Therefore, the objective of the study was to conduct an epidemiological study to determine the prevalence and identify the various genotypes present. This survey adds to our knowledge on the occurrence and distribution of Giardia genotypes in the studied region. The overall prevalence was found to be 6.8%. This parasitic infection was significantly associated with two age groups, i.e., >0-5 years and >5-12 years. Using a multilocus genotyping method, we genotyped 52 human Giardia isolates that were obtained from diarrheal patients. Two distinct assemblages were found in the population-30.8% belonged to assemblage A; 63.5% belonged to assemblage B, prevalent in the population; and 5.7% belonged to a combined assemblage A+B. Sub-assemblage AII was found in 17.3% of the cases, followed by sub-assemblage AI (13.5%). High levels of genetic diversity were found within the population of assemblage B undergoing balancing selection. Overall, the high prevalence of the parasite observed, particularly among children, raises a major concern and necessitates implementation of robust control measures. Furthermore, we report the presence of numerous unique genotypes, circulating in this limited geographical boundary, which can be useful dataset for future studies.


Subject(s)
Gastropoda , Giardia lamblia , Giardiasis , Child , Animals , Humans , Infant, Newborn , Infant , Child, Preschool , Giardia lamblia/genetics , Genotype , Giardiasis/epidemiology , Giardiasis/parasitology , Prevalence , Diarrhea/epidemiology , India/epidemiology , Feces/parasitology , Multilocus Sequence Typing , Phylogeny
17.
Sci Rep ; 13(1): 14596, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669981

ABSTRACT

Amebiasis is caused by the protozoan parasite Entamoeba histolytica. Treatment options other than metronidazole and its derivatives are few, and their low efficacy against asymptomatic cyst carriers, and experimental evidence of resistance in vitro justify the discovery/repurposing campaign for new drugs against amebiasis. Global metabolic responses to oxidative stress and cysteine deprivation by E. histolytica revealed glycerol metabolism may represent a rational target for drug development. In this study using 14C-labelled glucose, only 11% of the total glucose taken up by E. histolytica trophozoites is incorporated to lipids. To better understand the role of glycerol metabolism in this parasite, we focused on characterizing two important enzymes, glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (G3PDH). Recombinant GK was biochemically characterized in detail, while G3PDH was not due to failure of protein expression and purification. GK revealed novel characteristics and unprecedented kinetic properties in reverse reaction. Gene silencing revealed that GK is essential for optimum growth, whereas G3PDH is not. Gene silencing of G3PDH caused upregulated GK expression, while that of GK resulted in upregulation of antioxidant enzymes as shown by RNA-seq analysis. Although the precise molecular link between GK and the upregulation of antioxidant enzymes was not demonstrated, the observed increase in antioxidant enzyme expression upon GK gene silencing suggests a potential connection between GK and the cellular response to oxidative stress. Together, these results provide the first direct evidence of the biological importance and coordinated regulation of the glycerol metabolic pathways for proliferation and antioxidative defense in E. histolytica, justifying the exploitation of these enzymes as future drug targets.


Subject(s)
Amebiasis , Entamoeba histolytica , Parasites , Humans , Animals , Antioxidants , Biosynthetic Pathways , Glycerol , Glycerol Kinase , Cell Proliferation
18.
Front Cell Infect Microbiol ; 13: 1219629, 2023.
Article in English | MEDLINE | ID: mdl-37719668

ABSTRACT

Introduction: Female sand flies are hematophagous, feeding on animals and in the process serve as vectors for Leishmania, the parasites that cause leishmaniasis in humans. Leishmaniasis are a group of parasitic neglected tropical diseases in 98 countries including Nigeria and kills ~60,000 people/year. In Nigeria, Sokoto State is endemic to leishmaniasis but there is a knowledge gap on the identity of the prevalent sand flies and the Leishmania species they transmit. Hence, this cross-sectional study was designed to take inventory of the species of sand flies in Sokoto using genetic methods. Methods: 1,260 (310 females) sand flies were collected from three Local Government Areas (L.G.A) of Sokoto State- Wamakko, Sokoto South and Kware. Genomic DNA was extracted from each fly and DNA amplification by polymerase chain reaction (PCR) was carried out on the DNA samples using primers targeting the arthropods mitochondrial cytochrome oxidase subunit 1 (mt-coI) gene, and nested PCR with primers targeting the gene for Leishmania internal transcribed spacer-1 (its-1) of ribosomal RNA its-1rRNA. The PCR products were sequenced. Results: Gene sequence analysis revealed five species of sand flies belonging to the old-world genera namely Phlebotomus and Sergentomyia. The identified species were P. papatasi (6.45%), S. adleri (6.45%), S. affinis (9.7%), S. distincta (9.7%), S. schwetzi (67.7%). Within the sampling period, sand flies were most abundant in the rainy months of August (104/33.5%) and September (116/37.4%) with all the five identified species occurring. Sequence analysis of its-1 gene identified Leishmania infantum in two sand flies (2/310)- P. papatasi (from Sokoto South) and S. affinis (from Wamakko). BLAST search in NCBI and phylogenetic analysis revealed that the sand fly species are related to the species reported in different parts of Africa, while the L. infantum is identical to strain reported in Brazil (KY379083.1). Discussion: Phlebotomus papatasi and four species belonging to the genus Sergentomyia are the most prevalent sand flies in Sokoto State, Nigeria and they harbor L. infantum solely. The results shed light on why visceral leishmaniasis is the most predominant form of the disease. Therefore, we recommend that adequate care for dogs must be instituted as dogs are the major animal reservoir for L. infantum.


Subject(s)
Leishmania infantum , Phlebotomus , Psychodidae , Humans , Female , Animals , Dogs , Nigeria , Cross-Sectional Studies , Phylogeny
19.
Parasitol Res ; 122(11): 2525-2537, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37642770

ABSTRACT

Amoebiasis is an infection caused by enteric protozoa, most commonly Entamoeba histolytica, and is globally considered a potentially severe and life-threatening condition. To understand the impact of the parasite genome on disease outcomes, it is important to study the genomes of infecting strains in areas with high disease prevalence. These studies aim to establish correlations between parasite genotypes and the clinical presentation of amoebiasis. We employ a strain typing approach that utilizes multiple loci, including SREHP and three polymorphic non-coding loci (tRNA-linked array N-K2 and loci 1-2 and 5-6), for high-resolution analysis. Distinct clinical phenotype isolates underwent amplification and sequencing of studied loci. The nucleotide sequences were analysed using Tandem Repeats Finder to detect short tandem repeats (STRs). These patterns were combined to assign a genotype, and the correlation between clinical phenotypes and repetitive patterns was statistically evaluated. This study found significant polymorphism in the size and number of PCR fragments at SREHP and 5-6 locus, while the 1-2 locus and NK2 locus showed variations in PCR product sizes. Out of 41 genotypes, two (I6 and I41) were significantly associated with their respective disease outcomes and were found in multiple isolates. We observed that I6 was linked with a symptomatic outcome, with a statistically significant p-value of 0.0183. Additionally, we found that I41 was associated with ALA disease outcome, with a p-value of 0.0089. Our study revealed new repeat units not previously reported, unveiling the genetic composition of E. histolytica strains in India, associated with distinct disease manifestations.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Humans , Entamoebiasis/parasitology , Polymorphism, Genetic , Entamoeba histolytica/genetics , Phenotype , Microsatellite Repeats
20.
Exp Parasitol ; 253: 108602, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37619808

ABSTRACT

The microaerotolarent amitochondriate protozoan Giardia lamblia causes Giardiasis and produces a unique enzyme called Phospholipase B (PLB) in contrast to higher eukaryotes. The enzyme is produced upon induction with oxidative (H2O2) stress, thus leading to prostaglandin E2 (PGE2) production. It exists in dimeric form, and its molecular weight is 56 kDa. This PLB was extracellularly cloned in the pET21d vector. The ORF is 1620 bp (Genbank accession no. -OM939681) long and codes for a protein 539 amino acid long, with a 15 amino acid long amino-terminal signal peptide. The highest enzyme activity of PLB was identified at pH 7.5 and 35 °C. This specific enzyme was also active at 50 °C pH 10, but activity was low. We also analyzed the expression of PLB protein in G. lamblia, which was significantly induced under increased oxidative stress.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Lysophospholipase , Giardia lamblia/genetics , Hydrogen Peroxide , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL