Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37243153

ABSTRACT

The respiratory syncytial virus (RSV) causes significant respiratory disease in young infants and the elderly. Immune prophylaxis in infants is currently limited to palivizumab, an anti-RSV fusion (F) protein monoclonal antibody (mAb). While anti-F protein mAbs neutralize RSV, they are unable to prevent aberrant pathogenic responses provoked by the RSV attachment (G) protein. Recently, the co-crystal structures of two high-affinity anti-G protein mAbs that bind the central conserved domain (CCD) at distinct non-overlapping epitopes were solved. mAbs 3D3 and 2D10 are broadly neutralizing and block G protein CX3C-mediated chemotaxis by binding antigenic sites γ1 and γ2, respectively, which is known to reduce RSV disease. Previous studies have established 3D3 as a potential immunoprophylactic and therapeutic; however, there has been no similar evaluation of 2D10 available. Here, we sought to determine the differences in neutralization and immunity to RSV Line19F infection which recapitulates human RSV infection in mouse models making it useful for therapeutic antibody studies. Prophylactic (24 h prior to infection) or therapeutic (72 h post-infection) treatment of mice with 3D3, 2D10, or palivizumab were compared to isotype control antibody treatment. The results show that 2D10 can neutralize RSV Line19F both prophylactically and therapeutically, and can reduce disease-causing immune responses in a prophylactic but not therapeutic context. In contrast, 3D3 was able to significantly (p < 0.05) reduce lung virus titers and IL-13 in a prophylactic and therapeutic regimen suggesting subtle but important differences in immune responses to RSV infection with mAbs that bind distinct epitopes.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Mice , Humans , Animals , Aged , Palivizumab/therapeutic use , Antibodies, Viral , Viral Fusion Proteins , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal/therapeutic use , Epitopes
2.
J Virol ; 96(7): e0220121, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35266806

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of children, the elderly, and immunocompromised individuals. Currently, there are no FDA-approved RSV vaccines. The RSV G glycoprotein is used for viral attachment to host cells and impairment of host immunity by interacting with the human chemokine receptor CX3CR1. Antibodies that disrupt this interaction are protective against infection and disease. Nevertheless, development of an RSV G vaccine antigen has been hindered by its low immunogenicity and safety concerns. A previous study described three engineered RSV G proteins containing single-point mutations that induce higher levels of IgG antibodies and have improved safety profiles compared to wild-type RSV G (H. C. Bergeron, J. Murray, A. M. Nuñez Castrejon, et al., Viruses 13:352, 2021, https://doi.org/10.3390/v13020352). However, it is unclear if the mutations affect RSV G protein folding and display of its conformational epitopes. In this study, we show that the RSV G S177Q protein retains high-affinity binding to protective human and mouse monoclonal antibodies and has equal reactivity as wild-type RSV G protein to human reference immunoglobulin to RSV. Additionally, we determined the high-resolution crystal structure of RSV G S177Q protein in complex with the anti-RSV G antibody 3G12, further validating its antigenic structure. These studies show for the first time that an engineered RSV G protein with increased immunogenicity and safety retains conformational epitopes to high-affinity protective antibodies, supporting its further development as an RSV vaccine immunogen. IMPORTANCE Respiratory syncytial virus (RSV) causes severe lower respiratory diseases of children, the elderly, and immunocompromised populations. There currently are no FDA-approved RSV vaccines. Most vaccine development efforts have focused on the RSV F protein, and the field has generally overlooked the receptor-binding antigen RSV G due to its poor immunogenicity and safety concerns. However, single-point mutant RSV G proteins have been previously identified that have increased immunogenicity and safety. In this study, we investigate the antibody reactivities of three known RSV G mutant proteins. We show that one mutant RSV G protein retains high-affinity binding to protective monoclonal antibodies, is equally recognized by anti-RSV antibodies in human sera, and forms the same three-dimensional structure as the wild-type RSV G protein. Our study validates the structure-guided design of the RSV G protein as an RSV vaccine antigen.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antigens, Viral/genetics , Antigens, Viral/immunology , Epitopes/genetics , Epitopes/immunology , Immunogenicity, Vaccine/genetics , Immunogenicity, Vaccine/immunology , Mice , Mutation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
3.
Viruses ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672319

ABSTRACT

Respiratory syncytial virus (RSV) infection can cause bronchiolitis, pneumonia, morbidity, and some mortality, primarily in infants and the elderly, for which no vaccine is available. The RSV attachment (G) protein contains a central conserved domain (CCD) with a CX3C motif implicated in the induction of protective antibodies, thus vaccine candidates containing the G protein are of interest. This study determined if mutations in the G protein CCD would mediate immunogenicity while inducing G protein CX3C-CX3CR1 blocking antibodies. BALB/c mice were vaccinated with structurally-guided, rationally designed G proteins with CCD mutations. The results show that these G protein immunogens induce a substantial anti-G protein antibody response, and using serum IgG from the vaccinated mice, these antibodies are capable of blocking the RSV G protein CX3C-CX3CR1 binding while not interfering with CX3CL1, fractalkine.


Subject(s)
CX3C Chemokine Receptor 1/immunology , Chemokines, CX3C/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Viral/immunology , CX3C Chemokine Receptor 1/genetics , Chemokines, CX3C/genetics , Female , Humans , Mice , Mice, Inbred BALB C , Mutation , Protein Domains , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/genetics , Viral Envelope Proteins/chemistry
4.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852779

ABSTRACT

Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory tract disease and mortality in infants and the elderly. Currently, no vaccine or effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment to cells and contributes to pathogenesis by modulating host immunity through interactions with the human chemokine receptor CX3CR1. Antibodies targeting the RSV G central conserved domain are protective in both prophylactic and postinfection animal models. Here, we describe the crystal structure of the broadly neutralizing human monoclonal antibody 3G12 bound to the RSV G central conserved domain. Antibody 3G12 binds to a conformational epitope composed of highly conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G complexed with 3G12 adopts a distinct conformation not observed in previously described RSV G-antibody structures. Comparison to other structures reveals that the RSV G central conserved domain is flexible and can adopt multiple conformations in the regions flanking the cysteine noose. We also show that restriction of RSV G flexibility with a proline mutation abolishes binding to antibody 3G12 but not antibody 3D3, which recognizes a different conformation of RSV G. Our studies provide new insights for rational vaccine design, indicating the importance of preserving both the global structural integrity of antigens and local conformational flexibility at antigenic sites, which may elicit a more diverse antibody response and broader protection against infection and disease.IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in infants, young children, and the elderly, and currently, no licensed vaccine exists. In this study, we describe the crystal structure of the RSV surface glycoprotein G in complex with a broadly neutralizing human monoclonal antibody. The antibody binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it captures RSV G in a conformation not previously observed, revealing that this region is both structured and flexible. Importantly, our findings provide insight for the design of vaccines that elicit diverse antibodies, which may provide broad protection from infection and disease.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes/chemistry , Epitopes/immunology , Respiratory Syncytial Virus, Human/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , CX3C Chemokine Receptor 1/metabolism , Crystallography, X-Ray , Epitopes/genetics , Humans , Models, Molecular , Mutation , Protein Conformation , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL